论文标题

眩光:阳光眩光中的交通标志检测数据集

GLARE: A Dataset for Traffic Sign Detection in Sun Glare

论文作者

Gray, Nicholas, Moraes, Megan, Bian, Jiang, Wang, Alex, Tian, Allen, Wilson, Kurt, Huang, Yan, Xiong, Haoyi, Guo, Zhishan

论文摘要

实时机器学习对象检测算法通常在自动驾驶汽车技术中发现,并依赖于优质数据集。这些算法必须在日常条件以及强烈的阳光下正常工作。报告表明,眩光是撞车事故的两个最突出的原因之一。但是,现有的数据集,例如智能和安全汽车交通标志(LISA)数据集的实验室和德国交通标志识别基准,根本不反映Sun Glare的存在。本文介绍了眩光(眩光,请访问:https://github.com/nicholascg/glare_dataset)流量标志数据集:在阳光下重大视觉干扰的图像集合。眩光包含2,157张带有阳光眩光的交通标志图像,从33个美国道路录像带中删除。它为广泛使用的丽莎交通标志数据集提供了必要的丰富。我们的实验研究表明,尽管几个最先进的基线体系结构在过去没有太阳眩光的情况下表现出良好的交通符号检测性能,但在针对眩光测试时,它们的表现较差(例如,平均MAP0.5:0.95:0.95 of 19.4)。我们还注意到,当对阳光眩光性能(例如平均MAP0.5:0.95 of 39.6)中的交通标志图像进行培训时,当前的体系结构可以更好地检测,并且在对条件的混合物进行培训时(例如,平均MAP0.5:0.95 of 42.3)进行培训时表现最好。

Real-time machine learning object detection algorithms are often found within autonomous vehicle technology and depend on quality datasets. It is essential that these algorithms work correctly in everyday conditions as well as under strong sun glare. Reports indicate glare is one of the two most prominent environment-related reasons for crashes. However, existing datasets, such as the Laboratory for Intelligent & Safe Automobiles Traffic Sign (LISA) Dataset and the German Traffic Sign Recognition Benchmark, do not reflect the existence of sun glare at all. This paper presents the GLARE (GLARE is available at: https://github.com/NicholasCG/GLARE_Dataset ) traffic sign dataset: a collection of images with U.S-based traffic signs under heavy visual interference by sunlight. GLARE contains 2,157 images of traffic signs with sun glare, pulled from 33 videos of dashcam footage of roads in the United States. It provides an essential enrichment to the widely used LISA Traffic Sign dataset. Our experimental study shows that although several state-of-the-art baseline architectures have demonstrated good performance on traffic sign detection in conditions without sun glare in the past, they performed poorly when tested against GLARE (e.g., average mAP0.5:0.95 of 19.4). We also notice that current architectures have better detection when trained on images of traffic signs in sun glare performance (e.g., average mAP0.5:0.95 of 39.6), and perform best when trained on a mixture of conditions (e.g., average mAP0.5:0.95 of 42.3).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源