论文标题
合成间接费用图像自动设计的元模拟
Meta-simulation for the Automated Design of Synthetic Overhead Imagery
论文作者
论文摘要
近年来,合成(或模拟)数据用于培训机器学习模型的使用迅速增长。通常,合成数据可以比其现实世界中的对应物更快,更便宜。但是,使用合成图像的一个挑战是场景设计:例如,内容及其特征和空间布置的选择。为了有效,该设计不仅必须现实,而且适合目标域,而目标域(通过假设)是未标记的。在这项工作中,我们提出了一种方法,可以自动根据未标记的现实图像选择合成图像的设计。我们的方法称为神经 - 异位元模拟(NAM),建立在开创性的元模拟方法上。与当前的最新方法相反,我们的方法一旦离线就可以进行预训练,然后为新目标图像提供快速的设计推断。使用合成和现实世界中的问题,我们表明,NAMS不符合符合内域和室外目标图像的合成设计,并且与NAMS设计的图像相比,具有NAMS设计的图像的训练分割模型与幼稚的随机设计以及最新的随机设计和最新的元模拟方法相比,结果均优异。
The use of synthetic (or simulated) data for training machine learning models has grown rapidly in recent years. Synthetic data can often be generated much faster and more cheaply than its real-world counterpart. One challenge of using synthetic imagery however is scene design: e.g., the choice of content and its features and spatial arrangement. To be effective, this design must not only be realistic, but appropriate for the target domain, which (by assumption) is unlabeled. In this work, we propose an approach to automatically choose the design of synthetic imagery based upon unlabeled real-world imagery. Our approach, termed Neural-Adjoint Meta-Simulation (NAMS), builds upon the seminal recent meta-simulation approaches. In contrast to the current state-of-the-art methods, our approach can be pre-trained once offline, and then provides fast design inference for new target imagery. Using both synthetic and real-world problems, we show that NAMS infers synthetic designs that match both the in-domain and out-of-domain target imagery, and that training segmentation models with NAMS-designed imagery yields superior results compared to naïve randomized designs and state-of-the-art meta-simulation methods.