论文标题
通过材料结构的最大电磁局部密度
Maximum Electromagnetic Local Density of States via Material Structuring
论文作者
论文摘要
状态的电磁局部密度(LDOS)对于光子工程的许多方面至关重要,从增强光子源的发射到辐射热传递和光伏。我们提出了一个框架,用于评估结构化介质中LDO上的上限,该介质可以处理任意带宽并说明关键波散射效应而没有启发式近似。边界仅由带宽,材料敏感性和设备足迹确定,没有关于几何形状的假设。我们得出了与整个设计域中能量保存一致的最大LDO的分析表达式,该域用拓扑优化的结构进行基准测试时,对于大型设备而言,该结构几乎紧密。发现了最大LDOS增强的新型缩放定律:符合易感性和尺度的饱和度饱和,作为较高的易感性和尺度,作为由有损材料制成的半无限结构的带宽的四分之一根,对材料选择和设计应用产生了直接影响。
The electromagnetic local density of states (LDOS) is crucial to many aspects of photonics engineering, from enhancing emission of photon sources to radiative heat transfer and photovoltaics. We present a framework for evaluating upper bounds on LDOS in structured media that can handle arbitrary bandwidths and accounts for critical wave scattering effects with no heuristic approximations. The bounds are solely determined by the bandwidth, material susceptibility, and device footprint, with no assumptions on geometry. We derive an analytical expression for the maximum LDOS consistent with the conservation of energy across the entire design domain, which upon benchmarking with topology-optimized structures is shown to be nearly tight for large devices. Novel scaling laws for maximum LDOS enhancement are found: the bounds saturate to a finite value with increasing susceptibility and scale as the quartic root of the bandwidth for semi-infinite structures made of lossy materials, with direct implications on material selection and design applications.