论文标题

HGI-SLAM:循环封闭,具有人类和几何重要性特征

HGI-SLAM: Loop Closure With Human and Geometric Importance Features

论文作者

Mujoo, Shuhul, Ng, Jerry

论文摘要

我们提出了人类和几何重要性SLAM(HGI-SLAM),这是一种使用显着和几何特征循环封闭的新方法。循环闭合是SLAM的关键要素,具有许多已建立的方法来解决此问题。但是,使用基于几何或显着的特征,当前方法是狭窄的。我们将它们的成功合并为一个模型,该模型仅比两种类型的方法都胜过。我们的方法利用廉价的单眼相机,不依赖于深度传感器或LIDAR。 HGI-SLAM利用几何和显着特征,将它们处理成描述符,并将它们优化为一袋单词算法。通过使用并发线程并将我们的循环闭合检测与Orb-Slam2梳理,我们的系统是一个完整的SLAM框架。我们对KITTI和EUROC数据集进行了HGI循环检测和HGI-SLAM的广泛评估。我们还对我们的功能进行定性分析。我们的方法是实时运行的,并且在有机环境中保持准确的方式对大幅度的变化是强大的。 HGI-SLAM是一种端到端的大满贯系统,仅需要单眼视觉,并且在性能上与最先进的SLAM方法相当。

We present Human and Geometric Importance SLAM (HGI-SLAM), a novel approach to loop closure using salient and geometric features. Loop closure is a key element of SLAM, with many established methods for this problem. However, current methods are narrow, using either geometric or salient based features. We merge their successes into a model that outperforms both types of methods alone. Our method utilizes inexpensive monocular cameras and does not depend on depth sensors nor Lidar. HGI-SLAM utilizes geometric and salient features, processes them into descriptors, and optimizes them for a bag of words algorithm. By using a concurrent thread and combing our loop closure detection with ORB-SLAM2, our system is a complete SLAM framework. We present extensive evaluations of HGI loop detection and HGI-SLAM on the KITTI and EuRoC datasets. We also provide a qualitative analysis of our features. Our method runs in real time, and is robust to large viewpoint changes while staying accurate in organic environments. HGI-SLAM is an end-to-end SLAM system that only requires monocular vision and is comparable in performance to state-of-the-art SLAM methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源