论文标题

匹配算法,并提取了多组信息的低频数据

A Map-matching Algorithm with Extraction of Multi-group Information for Low-frequency Data

论文作者

Fang, Jie, Wu, Xiongwei, Lin, Dianchao, Xu, Mengyun, Wu, Huahua, Wu, Xuesong, Bi, Ting

论文摘要

探针车的使用日益增长会产生大量的GNSS数据。受卫星定位技术的限制,进一步提高地图匹配的准确性是具有挑战性的工作,尤其是对于低频轨迹。当与轨迹匹配时,自我车辆的当前旅行时空信息对于最少的数据是最有用的。此外,还有大量其他数据,例如其他车辆的状态和过去的预测结果,但是很难提取有用的信息以匹配地图和推断路径。大多数地图匹配研究仅使用自我车辆的数据,而忽略了其他车辆的数据。基于它,本文设计了一种新的地图匹配方法,以充分利用“大数据”。首先,我们根据与当前匹配探针的空间和时间距离将所有数据分为四组,这使我们能够对其有用性进行排序。然后,我们设计了三种不同的方法来从它们中提取有价值的信息(分数):速度和轴承的分数,历史用法的分数以及使用光谱图马尔可夫中立网络的交通状态分数。最后,我们使用修改后的TOP-K最短路径方法来搜索椭圆区域内的候选路径,然后使用Fused分数推断路径(投影位置)。我们使用中国的现实世界数据集测试了针对基线算法的提出方法。结果表明,所有评分方法都可以增强地图匹配的精度。此外,我们的方法胜过其他方法,尤其是当GNSS探测频率小于0.01 Hz时。

The growing use of probe vehicles generates a huge number of GNSS data. Limited by the satellite positioning technology, further improving the accuracy of map-matching is challenging work, especially for low-frequency trajectories. When matching a trajectory, the ego vehicle's spatial-temporal information of the present trip is the most useful with the least amount of data. In addition, there are a large amount of other data, e.g., other vehicles' state and past prediction results, but it is hard to extract useful information for matching maps and inferring paths. Most map-matching studies only used the ego vehicle's data and ignored other vehicles' data. Based on it, this paper designs a new map-matching method to make full use of "Big data". We first sort all data into four groups according to their spatial and temporal distance from the present matching probe which allows us to sort for their usefulness. Then we design three different methods to extract valuable information (scores) from them: a score for speed and bearing, a score for historical usage, and a score for traffic state using the spectral graph Markov neutral network. Finally, we use a modified top-K shortest-path method to search the candidate paths within an ellipse region and then use the fused score to infer the path (projected location). We test the proposed method against baseline algorithms using a real-world dataset in China. The results show that all scoring methods can enhance map-matching accuracy. Furthermore, our method outperforms the others, especially when GNSS probing frequency is less than 0.01 Hz.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源