论文标题

在一些远端nip理论中的最小流量和可定义的舒适性上

On minimal flows and definable amenability in some distal NIP theories

论文作者

Yao, Ningyuan, Zhang, Zhentao

论文摘要

我们研究了在其类型空间上作用的可定义组的可定义拓扑动态$(g(m),s_g(m))$,其中$ m $是$ o $ $ $ $ - 最小的结构或$ p $ a的封闭式封闭的字段,而$ g $ $ g $是可确定的可安装的组。我们专注于Neweslki提出的问题,即微弱的通用类型是否与几乎周期性的类型一致,这表明当$ G $有限的全球弱通用类型有限时,答案是积极的。我们还提供了两个“最小反例”,其中$ g $无可争议地将许多全球性弱通用类型无可限制地扩展到“最小流量,一定可以正常的群体和O-Wimimality”的主要结果到更一般的环境。

We study the definable topological dynamics $(G(M), S_G(M))$ of a definable group acting on its type space, where $M$ is either an $o$-minimal structure or a $p$-adically closed field, and $G$ a definable amenable group. We focus on the problem raised by Neweslki of whether weakly generic types coincide with almost periodic types, showing that the answer is positive when $G$ has boundedly many global weakly generic types. We also give two "minimal counterexamples" where $G$ has unboundedly many global weakly generic types, extending the main results of "On minimal flows, definably amenable groups, and o-minimality" to a more general context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源