论文标题

多个空中机器人的主动度量标准映射

Active Metric-Semantic Mapping by Multiple Aerial Robots

论文作者

Liu, Xu, Prabhu, Ankit, Cladera, Fernando, Miller, Ian D., Zhou, Lifeng, Taylor, Camillo J., Kumar, Vijay

论文摘要

主动映射的传统方法专注于构建几何图。但是,对于大多数真实世界应用程序,可行的信息与环境中的语义有意义的对象有关。我们提出了一种用于主动度量语义映射问题的方法,该方法使多个异质机器人可以协作构建环境地图。这些机器人积极探索以最大程度地减少语义(对象分类)和几何(对象建模)信息中的不确定性。我们使用信息丰富但稀疏的对象模型表示环境,每个模型由基本形状和语义类标签组成,并使用大量现实世界数据在经验上表征不确定性。鉴于先前的地图,我们使用此模型为每个机器人选择动作以最大程度地减少不确定性。通过多种现实世界环境中的多机器人实验证明了我们的算法的性能。所提出的框架适用于广泛的现实问题,例如精确农业,基础设施检查和工厂中的资产映射。可以在https://youtu.be/s86sgxi54ou上找到演示视频。

Traditional approaches for active mapping focus on building geometric maps. For most real-world applications, however, actionable information is related to semantically meaningful objects in the environment. We propose an approach to the active metric-semantic mapping problem that enables multiple heterogeneous robots to collaboratively build a map of the environment. The robots actively explore to minimize the uncertainties in both semantic (object classification) and geometric (object modeling) information. We represent the environment using informative but sparse object models, each consisting of a basic shape and a semantic class label, and characterize uncertainties empirically using a large amount of real-world data. Given a prior map, we use this model to select actions for each robot to minimize uncertainties. The performance of our algorithm is demonstrated through multi-robot experiments in diverse real-world environments. The proposed framework is applicable to a wide range of real-world problems, such as precision agriculture, infrastructure inspection, and asset mapping in factories. A demo video can be found at https://youtu.be/S86SgXi54oU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源