论文标题
Bloch方程非线性反转的定量磁共振成像
Quantitative Magnetic Resonance Imaging by Nonlinear Inversion of the Bloch Equations
论文作者
论文摘要
目的:开发用于多参数定量MRI的基于通用模型的重建框架,该框架可以与来自不同脉冲序列的数据一起使用。 方法:基于通用的非线性模型重建,用于直接通过数值优化从获得的K空间来定量MRI估计的参数图。这需要数字准确,有效的方法来求解BLOCH方程及其部分衍生物。在这项工作中,我们将直接敏感性分析和预计的状态转换矩阵结合到一个通用框架中,用于基于无校准模型的重建,可以应用于不同的脉冲序列。作为概念验证,该方法将用于定量$ t_1 $和$ t_2 $映射,其中具有单次反转回收(IR)Flash(IR)Flash和IR BSSFP序列中的模拟,幻影和人脑中的IR BSSFP序列。 结果:直接灵敏度分析可以对衍生物进行高度准确和数值稳定的计算。状态转换矩阵有效利用脉冲序列中的重复模式,以使本工作中考虑的示例的计算加速10倍,同时保留天然ODE求解器的准确性。基于通用模型的方法基于径向IR闪光的已知分析解决方案,再现了先前基于模型的重建的定量结果。对于IR BSFFP,它在数值模拟和实验中为NIST Phantom生成了准确的$ T_1 $和$ T_2 $地图。尽管结果受磁化转移效应的影响,但也显示了人脑的可行性。 结论:通过使用BLOCH方程为正向模型开发有效的数值优化工具,这项工作可以基于通用模型的定量MRI重建。
Purpose: Development of a generic model-based reconstruction framework for multi-parametric quantitative MRI that can be used with data from different pulse sequences. Methods: Generic nonlinear model-based reconstruction for quantitative MRI estimates parametric maps directly from the acquired k-space by numerical optimization. This requires numerically accurate and efficient methods to solve the Bloch equations and their partial derivatives. In this work, we combine direct sensitivity analysis and pre-computed state-transition matrices into a generic framework for calibrationless model-based reconstruction that can be applied to different pulse sequences. As a proof-of-concept, the method is implemented and validated for quantitative $T_1$ and $T_2$ mapping with single-shot inversion-recovery (IR) FLASH and IR bSSFP sequences in simulations, phantoms, and the human brain. Results: The direct sensitivity analysis enables a highly accurate and numerically stable calculation of the derivatives. The state-transition matrices efficiently exploit repeating patterns in pulse sequences, speeding up the calculation by a factor of 10 for the examples considered in this work, while preserving the accuracy of native ODE solvers. The generic model-based method reproduces quantitative results of previous model-based reconstructions based on the known analytical solutions for radial IR FLASH. For IR bSFFP it produces accurate $T_1$ and $T_2$ maps for the NIST phantom in numerical simulations and experiments. Feasibility is also shown for human brain, although results are affected by magnetization transfer effects. Conclusion: By developing efficient tools for numerical optimizations using the Bloch equations as forward model, this work enables generic model-based reconstruction for quantitative MRI.