论文标题

绘制$ Q $ -ASKEY计划。 ii。 $ Q $ -ZHEDANOV计划

Charting the $q$-Askey scheme. II. The $q$-Zhedanov scheme

论文作者

Koornwinder, Tom H.

论文摘要

这是一系列论文中的第二篇,该论文旨在探讨在$ Q $ -ASKEY计划中区分家庭的概念方法和参数为家庭参数的统一方法。对于$ q $ -askey方案中的多项式系统$ p_n(x)$,满足$ lp_n = h_np_n $,$ l $ l $ l $ l $每二订单$ q $ -difference运营商$ q $ q $ -zheDanov代数是由运营商生成的代数,由运营商$ $ l $ $ l $和x $ x $ $ x $)。它具有两个基本上发生五个系数的关系。一个或多个系数的消失对应于一个亚科或限制Askey-Wilson多项式的家族。从一个家庭到另一个家庭的箭意味着在后一个家庭中,一个系数消失了。这产生了本文中给出的$ Q $ -ZHEDANOV计划。 $ q $ - $ p_n(x)$的hypheremetric表达式可以解释为某些牛顿多项式的$ p_n(x)$的扩展。在我们以前的论文ARXIV:2108.03858中,我们使用了Verde-Star的此类扩展的清洁参数化,并获得了$ Q $ -VERDE-StAR方案,其中其中一个或多个参数消失了,对应于亚家族或限制家族。牛顿多项式对运营商$ l $和$ x $的操作可以用Verde-Star参数表示,因此可以用这些参数来表示$ Q $ -ZHEDANOV代数的系数。 $ Q $ VERDE-StAR计划与$ Q $ -ZHEDANOV计划之间存在有趣的区别,该计划在论文中进行了讨论。

This is the second in a series of papers which intend to explore conceptual ways of distinguishing between families in the $q$-Askey scheme and uniform ways of parametrizing the families. For a system of polynomials $p_n(x)$ in the $q$-Askey scheme satisfying $Lp_n=h_np_n$ with $L$ a second order $q$-difference operator the $q$-Zhedanov algebra is the algebra generated by operators $L$ and $X$ (multiplication by $x$). It has two relations in which essentially five coefficients occur. Vanishing of one or more of the coefficients corresponds to a subfamily or limit family of the Askey-Wilson polynomials. An arrow from one family to another means that in the latter family one more coefficient vanishes. This yields the $q$-Zhedanov scheme given in this paper. The $q$-hypergeometric expression of $p_n(x)$ can be interpreted as an expansion of $p_n(x)$ in terms of certain Newton polynomials. In our previous paper arXiv:2108.03858 we used Verde-Star's clean parametrization of such expansions and we obtained a $q$-Verde-Star scheme, where vanishing of one or more of these parameters corresponds to a subfamily or limit family. The actions of the operators $L$ and $X$ on the Newton polynomials can be expressed in terms of the Verde-Star parameters, and thus the coefficients for the $q$-Zhedanov algebra can be expressed in terms of these parameters. There are interesting differences between the $q$-Verde-Star scheme and the $q$-Zhedanov scheme, which are discussed in the paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源