论文标题
在仙女座的phat恒星光环和磁盘中解决了溅水化学动力学:沿主要轴的内部光环的性质
Resolved SPLASH Chemodynamics in Andromeda's PHAT Stellar Halo and Disk: On the Nature of the Inner Halo Along the Major Axis
论文作者
论文摘要
恒星运动学和金属性是探索银河磁盘和光晕的地层场景的关键。在这项工作中,我们表征了沿着M31磁盘的运动学与光度计金属性之间的关系。我们将来自Panchromatic Hubble仙女座财政部(PHAT)调查的光学HST/ACS光度法与来自仙女座的恒星光环(Splash)调查的光谱和光度法景观的Keck/Deimos Spectra结合在一起。最终的3512个单个红色巨型分支星的样品跨越了4-19个kPC,使其成为磁盘和内晕的有用探针。我们通过对磁盘区域的位置的函数进行建模,将这些恒星分为磁盘和光晕种群,其中$ \ sim $ 73%的恒星具有很高的属于磁盘的可能性,而$ \ sim $ \ sim $ 14%$ 14%。尽管通常认为恒星晕圈是金属贫困的,但运动学上鉴定出的光环包含大量的恒星($ \ sim $ 29%),具有类似磁盘的金属性([[Fe/H] $ _ {\ rm Phot phot} $ \ sim $ \ sim $ $ $ $ -0.10 $)。这种金属富的光环种群的气态磁盘与光晕的其余部分相似,表明它与规范厚的磁盘不符。它的特性与源自巨大恒星流合并事件的潮汐碎片不一致。此外,光环在化学上与以前沿次要轴(即远离磁盘)鉴定的相结合成分不同,这意味着来自不同地层通道的贡献。这些金属丰富的光环恒星提供了直接的化学动力学证据,有利于先前建议的M31内部恒星光环中的“踢起来”磁盘种群。
Stellar kinematics and metallicity are key to exploring formation scenarios for galactic disks and halos. In this work, we characterized the relationship between kinematics and photometric metallicity along the line-of-sight to M31's disk. We combined optical HST/ACS photometry from the Panchromatic Hubble Andromeda Treasury (PHAT) survey with Keck/DEIMOS spectra from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) survey. The resulting sample of 3512 individual red giant branch stars spans 4-19 projected kpc, making it a useful probe of both the disk and inner halo. We separated these stars into disk and halo populations by modeling the line-of-sight velocity distributions as a function of position across the disk region, where $\sim$73% stars have a high likelihood of belonging to the disk and $\sim$14% to the halo. Although stellar halos are typically thought to be metal-poor, the kinematically identified halo contains a significant population of stars ($\sim$29%) with disk-like metallicity ([Fe/H]$_{\rm phot}$ $\sim$ $-0.10$). This metal-rich halo population lags the gaseous disk to a similar extent as the rest of the halo, indicating that it does not correspond to a canonical thick disk. Its properties are inconsistent with those of tidal debris originating from the Giant Stellar Stream merger event. Moreover, the halo is chemically distinct from the phase-mixed component previously identified along the minor axis (i.e., away from the disk), implying contributions from different formation channels. These metal-rich halo stars provide direct chemodynamical evidence in favor of the previously suggested "kicked-up" disk population in M31's inner stellar halo.