论文标题
DPFNET:一个双分支扩张的网络,具有相感的傅立叶卷积,用于弱光图像增强
DPFNet: A Dual-branch Dilated Network with Phase-aware Fourier Convolution for Low-light Image Enhancement
论文作者
论文摘要
低光图像增强是一个经典的计算机视觉问题,旨在从低光图像中恢复正常暴露图像。但是,该领域常用的卷积神经网络擅长对空间域中的低频局部结构特征进行取样,这导致了重建图像的不清楚纹理细节。为了减轻这个问题,我们提出了一个使用傅立叶系数的新型模块,该模块可以在频率阶段的语义约束下恢复高质量的纹理细节并补充空间域。此外,我们使用带有不同接收场的扩张卷积为图像空间域设计了一个简单有效的模块,以减轻频繁下采样引起的细节损失。我们将上述部分集成到端到端的双分支网络中,并设计一个新颖的损失委员会和一个自适应融合模块,以指导网络灵活地结合空间和频域特征,以产生更令人愉悦的视觉效果。最后,我们在公共基准上评估了拟议的网络。广泛的实验结果表明,我们的方法的表现优于许多现有的最先进的结果,表现出了出色的性能和潜力。
Low-light image enhancement is a classical computer vision problem aiming to recover normal-exposure images from low-light images. However, convolutional neural networks commonly used in this field are good at sampling low-frequency local structural features in the spatial domain, which leads to unclear texture details of the reconstructed images. To alleviate this problem, we propose a novel module using the Fourier coefficients, which can recover high-quality texture details under the constraint of semantics in the frequency phase and supplement the spatial domain. In addition, we design a simple and efficient module for the image spatial domain using dilated convolutions with different receptive fields to alleviate the loss of detail caused by frequent downsampling. We integrate the above parts into an end-to-end dual branch network and design a novel loss committee and an adaptive fusion module to guide the network to flexibly combine spatial and frequency domain features to generate more pleasing visual effects. Finally, we evaluate the proposed network on public benchmarks. Extensive experimental results show that our method outperforms many existing state-of-the-art ones, showing outstanding performance and potential.