论文标题

菠萝:通过获取平行人格化数据来学习增强的生成

PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation

论文作者

Keh, Sedrick Scott, Lu, Kevin, Gangal, Varun, Feng, Steven Y., Jhamtani, Harsh, Alikhani, Malihe, Hovy, Eduard

论文摘要

拟人化是一种语音人物,它赋予无生命实体具有属性和行动,通常被视为需要动画。在本文中,我们探讨了人格化生成的任务。为此,我们提出了菠萝:通过获取平行的人格化数据来增强生成来实现无生命的实体。我们策划了一个名为PersonifCorp的拟人化语料库,并自动生成了这些拟人化的文字化。我们通过训练SEQ2SEQ模型来拟人化给定的文字输入,从而证明了该平行语料库的有用性。自动评估和人类评估都表明,通过人格科目进行微调会导致与人格化相关的素质(例如动画和兴趣)的显着提高。详细的定性分析还强调了菠萝在基准上的关键优势和缺陷,表明具有产生多样化和创造性的拟人化的强大能力,从而增强了句子的整体吸引力。

A personification is a figure of speech that endows inanimate entities with properties and actions typically seen as requiring animacy. In this paper, we explore the task of personification generation. To this end, we propose PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation. We curate a corpus of personifications called PersonifCorp, together with automatically generated de-personified literalizations of these personifications. We demonstrate the usefulness of this parallel corpus by training a seq2seq model to personify a given literal input. Both automatic and human evaluations show that fine-tuning with PersonifCorp leads to significant gains in personification-related qualities such as animacy and interestingness. A detailed qualitative analysis also highlights key strengths and imperfections of PINEAPPLE over baselines, demonstrating a strong ability to generate diverse and creative personifications that enhance the overall appeal of a sentence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源