论文标题
关于随机矩阵i的产物I:Lyapunov指数的定向衍生物的一些限制了定理
Some Limit Theorems Regarding Products of Random Matrices I: Directional Derivative of the Lyapunov Exponent
论文作者
论文摘要
给定I.I.D.序列$ \ {a_n(ω)\} _ {n \ ge 1} $可逆矩阵和随机矩阵$ b(ω)$,我们考虑由$ s_n(ω)= a_n(ω)s_ {n-1}(n-1}(n-1)$和$ T_N(ω)$ s_n(ω)$ s_n(ω)$ t_n(ω)$ t_n(ω)$ T_N(ω)$ t_n(ω)$ t_n(ω)$ T_N(Ω) b(σ^{n-1}ω)s_ {n-1}(ω)+a_n(ω)t_ {n-1}(ω)$,并研究了涉及$ t_n(ω)$的几个限制定理,以及$ t_n(ω)$的$ t_n(ω)$ $ t_n(ω)$的渐近行为。
Given an i.i.d. sequence $\{A_n(ω)\}_{n\ge 1}$ of invertible matrices and a random matrix $B(ω)$, we consider the random matrix sequences inductively defined by $S_n(ω) = A_n(ω)S_{n-1}(ω)$ and $T_n(ω) = B(σ^{n-1}ω)S_{n-1}(ω)+A_n(ω)T_{n-1}(ω)$, and study several limit theorems involving $T_n(ω)$ as well as the asymptotic behaviour of the action of $T_n(ω)$ on the projective space and on the unit circle.