论文标题

具有共享标准的不同激光引起的分解光谱系统之间的库转移

Library transfer between distinct Laser-Induced Breakdown Spectroscopy systems with shared standards

论文作者

Vrábel, J., Képeš, E., Nedělník, P., Buday, J., Cempírek, J., Pořízka, P., Kaiser, J.

论文摘要

不同光谱系统的相互不兼容是激光诱导的分解光谱(LIBS)的最大因素之一。由于需要广泛的校准,与建立新的Libs系统有关的成本增加了。解决该问题将实现实验室间参考测量和共享光谱库,这对于其他光谱技术至关重要。在这项工作中,我们研究了该挑战的简化版本,其中Libs系统仅在使用的光谱仪和收集光学方面有所不同,但共享设备的所有其他部分,并同时从相同的等离子体羽流中收集光谱。用作异质标本的高光谱图像测量的广泛数据集用于训练可以在系统之间传递光谱的机器学习模型。该转移是由由变量自动编码器(VAE)和完全连接的人工神经网络(ANN)组成的管道实现的。在第一步中,我们获得了在初级系统上测量的光谱的潜在表示(使用VAE)。在第二步中,我们将光谱从二级系统映射到潜在空间(ANN)中的相应位置。最后,从潜在空间重建二级系统光谱到主要系统的空间。通过几个优点(欧几里得和余弦距离,都在空间上解析; k-均值的转移光谱聚类)评估转移。将该方法与几种基线方法进行比较。

The mutual incompatibility of distinct spectroscopic systems is among the most limiting factors in Laser-Induced Breakdown Spectroscopy (LIBS). The cost related to setting up a new LIBS system is increased, as its extensive calibration is required. Solving the problem would enable inter-laboratory reference measurements and shared spectral libraries, which are fundamental for other spectroscopic techniques. In this work, we study a simplified version of this challenge where LIBS systems differ only in used spectrometers and collection optics but share all other parts of the apparatus, and collect spectra simultaneously from the same plasma plume. Extensive datasets measured as hyperspectral images of heterogeneous specimens are used to train machine learning models that can transfer spectra between systems. The transfer is realized by a pipeline that consists of a variational autoencoder (VAE) and a fully-connected artificial neural network (ANN). In the first step, we obtain a latent representation of the spectra which were measured on the Primary system (by using the VAE). In the second step, we map spectra from the Secondary system to corresponding locations in the latent space (by the ANN). Finally, Secondary system spectra are reconstructed from the latent space to the space of the Primary system. The transfer is evaluated by several figures of merit (Euclidean and cosine distances, both spatially resolved; k-means clustering of transferred spectra). The methodology is compared to several baseline approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源