论文标题

上下文感知的查询重写,以改善用户在电子商务网站上的搜索经验

Context-Aware Query Rewriting for Improving Users' Search Experience on E-commerce Websites

论文作者

Zuo, Simiao, Yin, Qingyu, Jiang, Haoming, Xi, Shaohui, Yin, Bing, Zhang, Chao, Zhao, Tuo

论文摘要

电子商务查询通常简短而模棱两可。因此,查询理解通常使用查询重写来消除用户输入查询。在使用电子商务搜索工具时,用户倾向于在购买之前输入多个搜索,我们称之为上下文。这些历史搜索包含有关用户真正购物意图的上下文见解。因此,对此类上下文信息进行建模对于更好的查询重写模型至关重要。但是,现有的查询重写模型忽略了用户的历史行为,而仅考虑即时搜索查询,这通常是一个简短的字符串,提供有关真正购物意图的有限信息。 我们提出了一个端到端上下文感知的查询重写模型来弥合此差距,从而考虑了搜索上下文。具体来说,我们的模型使用历史记录搜索查询及其包含的单词构建了会话图。然后,我们采用图形注意机制,该机制对交叉关系进行建模并计算会话的上下文信息。随后,该模型通过使用聚合网络将上下文信息与即时搜索查询组合来计算会话表示。然后将会话表示形式解码以生成重写的查询。从经验上讲,我们证明了我们方法对各种指标下最先进的方法的优越性。通过在线购物平台的内部数据,通过介绍上下文信息,我们的模型在MRR(平均值等级)度量下提高了11.6%的改善,并在HIT@16衡量标准(命中率指标)下提高了20.1%,与最佳基线方法(Transformer-Base-BasiteR Model)相比。

E-commerce queries are often short and ambiguous. Consequently, query understanding often uses query rewriting to disambiguate user-input queries. While using e-commerce search tools, users tend to enter multiple searches, which we call context, before purchasing. These history searches contain contextual insights about users' true shopping intents. Therefore, modeling such contextual information is critical to a better query rewriting model. However, existing query rewriting models ignore users' history behaviors and consider only the instant search query, which is often a short string offering limited information about the true shopping intent. We propose an end-to-end context-aware query rewriting model to bridge this gap, which takes the search context into account. Specifically, our model builds a session graph using the history search queries and their contained words. We then employ a graph attention mechanism that models cross-query relations and computes contextual information of the session. The model subsequently calculates session representations by combining the contextual information with the instant search query using an aggregation network. The session representations are then decoded to generate rewritten queries. Empirically, we demonstrate the superiority of our method to state-of-the-art approaches under various metrics. On in-house data from an online shopping platform, by introducing contextual information, our model achieves 11.6% improvement under the MRR (Mean Reciprocal Rank) metric and 20.1% improvement under the HIT@16 metric (a hit rate metric), in comparison with the best baseline method (Transformer-based model).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源