论文标题

收敛到代数数的一些算术特性

Some arithmetical properties of convergents to algebraic numbers

论文作者

Bugeaud, Yann, Nguyen, Khoa D.

论文摘要

令$ξ$为非理性代数实数,$(p_k / q_k)_ {k \ ge 1} $表示其收敛序列。令$(u_n)_ {n \ geq 1} $为整数的非分级线性复发序列,这不是多项式序列。我们表明,如果序列的相交$(q_k)_ {k \ ge 1} $和$(u_n)_ {n \ geq 1} $是无限的,那么$ξ$是二次数字。我们还讨论了序列$(q_k)_ {k \ ge 1} $的几个算术属性。

Let $ξ$ be an irrational algebraic real number and $(p_k / q_k)_{k \ge 1}$ denote the sequence of its convergents. Let $(u_n)_{n \geq 1}$ be a non-degenerate linear recurrence sequence of integers, which is not a polynomial sequence. We show that if the intersection of the sequences $(q_k)_{k \ge 1}$ and $(u_n)_{n \geq 1}$ is infinite, then $ξ$ is a quadratic number. We also discuss several arithmetical properties of the sequence $(q_k)_{k \ge 1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源