论文标题

小顶点削减对折纸风浪龙力学的巨大影响

Large Impact of Small Vertex Cuts on the Mechanics of Origami Bellows

论文作者

Yang, Mengzhu, Grey, Steven W., Scarpa, Fabrizio, Schenk, Mark

论文摘要

对于折纸结构,沿着折痕穿孔或切割缝隙是定义折叠线和减轻顶点应力浓度的有效方法。在这封信中,我们通过数值和实验表明,对于不可折叠的折纸波纹管(例如Miura-Ori,Kresling模式),在顶点处引入小切口,导致在轴向压力下降低Bellows刚度的数量级。此外,顶点的切口会影响非线性响应,例如力限点的位置和大小,以及可行配置的存在。由于折纸波纹管不能刚性折叠,因此轴向压缩必然会导致小平面变形。发现顶点的小切口可提供出乎意料的巨大压力减轻,从而导致波纹管的机械性能变化不成比例。为了准确地对折纸风浪管的力学进行建模,因此必须准确捕获此类制造细节。最后,引入顶点切口可以作为一种新型方法来调整非刚性可折叠折纸结构的刚度。

For origami structures, perforating or cutting slits along creases is an effective method to define fold lines and alleviate stress concentrations at vertices. In this letter we show numerically and experimentally that for non-rigid-foldable origami bellows (e.g. Miura-ori, Kresling patterns) the introduction of small cut-outs at the vertices results in up to an order of magnitude reduction of the bellows' stiffness under axial compression. Further, the cut-outs at vertices impact the nonlinear response, e.g. the position and magnitude of a force limit point and presence of bistable configurations. As the origami bellows are not rigid foldable, an axial compression will necessarily result in facet deformations; the small cut-outs at the vertices are found to provide an unexpectedly large stress alleviation, resulting in disproportionate changes in mechanical properties of the bellows. In order to accurately model the mechanics of origami bellows, such manufacturing details must therefore be captured accurately. Lastly, introducing vertex cut-outs can be offered as a novel approach to tailoring the stiffness of non-rigid foldable origami structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源