论文标题

合成语音检测中的公开挑战

Open Challenges in Synthetic Speech Detection

论文作者

Cuccovillo, Luca, Papastergiopoulos, Christoforos, Vafeiadis, Anastasios, Yaroshchuk, Artem, Aichroth, Patrick, Votis, Konstantinos, Tzovaras, Dimitrios

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper the current status and open challenges of synthetic speech detection are addressed. The work comprises an initial analysis of available open datasets and of existing detection methods, a description of the requirements for new research datasets compliant with regulations and better representing real-case scenarios, and a discussion of the desired characteristics of future trustworthy detection methods in terms of both functional and non-functional requirements. Compared to other works, based on specific detection solutions or presenting single dataset of synthetic speeches, our paper is meant to orient future state-of-the-art research in the domain, to quickly lessen the current gap between synthesis and detection approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源