论文标题
电动力学和Kalb-Ramond理论中的渐近对称性
Asymptotic Symmetries in Electrodynamics and Kalb-Ramond Theory
论文作者
论文摘要
在本论文中,我们旨在在未来的零无限时在四个维度上找到Kalb-Ramond场的渐近对称性。我们首先回顾了未来无效无穷大的四维Minkowski时空中电动力学的渐近对称性。我们继续研究未来无效无穷大的Kalb-Ramond领域的渐近对称性。我们通过要求能量,动量,角动量和通过未来的无效无穷大的能量,动量,角度动量和电荷磁通量来激发下降条件。我们在``径向''和洛伦兹量规上扩展了量规场,并计算了生成的电荷。使用Kalb-Ramond理论与标量二维之间的双重性,我们再次得出了该领域的下降条件,并将它们与上述结果相结合。但是,我们的发现可以汇总到下面的范围。但是,相似的生成的辐射范围呈现出来的辐射。仪表在无限量消失。该结果可能表明,该规格中的下降条件过于严格。我们观察到Kalb-Ramond和标量场理论的渐近行为的一致性。即使我们渐近地扩展了两个磁场,通过双重性考虑获得的Kalb-Ramond场的下降条件与从上面的有限条件中得出的次数兼容。这也可能使我们能够解决\ cite {campiglia2018}中提出的问题,哪些是由标量磁场的软电荷产生的缺失的渐近对称性。
In this thesis, we aim to find the asymptotic symmetries of the Kalb-Ramond field in four dimensions at future null infinity. We start by reviewing the asymptotic symmetries of electrodynamics in four-dimensional Minkowski spacetime at future null infinity. We continue by investigating the asymptotic symmetries of the Kalb-Ramond field at future null infinity. We motivate the fall-off conditions by demanding the finiteness of energy, momentum, angular momentum and charge flux through future null infinity. We expand the gauge fields in ``radial" and Lorenz gauge and compute the generating charges. Using the duality between the Kalb-Ramond theory and the scalar field in two dimensions, we again derive the fields' fall-off conditions and compare them to the ones obtained above. Our findings can be summarized as follows: The different gauges yield two similar generating charges, however, the charge obtained in the ``radial" gauge vanishes at infinity. This result might indicate that the fall-off conditions are too strict in this gauge. We observe consistency in the asymptotic behaviours of Kalb-Ramond and scalar field theories. Even after we expanded both fields asymptotically, the fall-off conditions for the Kalb-Ramond field obtained by duality considerations are compatible with those derived from the finiteness conditions above. This might also allow us to address the question asked in \cite{Campiglia2018} about which are the missing asymptotic symmetries generated by the soft charges of scalar fields.