论文标题

Anderson的本地化过渡在无序的非炎性系统中

Anderson localization transitions in disordered non-Hermitian systems with exceptional points

论文作者

Wang, C., Wang, X. R.

论文摘要

Hermitian系统连续过渡的关键指数取决于其维度和对称性。这是连续过渡的普遍性的著名概念。在这里,我们报告了在非二维(2D)系统中安德森本地化过渡的超级工业性概念,其中关键指数不取决于对称性的特殊点。通过使用参与比的有限尺寸缩放分析,对安德森本地化过渡进行数值研究。在二阶或四阶的特殊点上,两个具有不同对称性的非热系统具有相同的相关长度的相同关键指数$ν\ simeq 2 $。该值不同于所有已知的2D疾病遗传学和非温和的系统。在对称性保存和对称性的阶段中,具有时间反转对称性且没有自旋 - 反转对称性的非热模型(没有时间反向和自旋 - 旋转对称性)在同一2D Hermitian Electron的2D Hermitian Electron Systems of Gaussian Symplectic(单位)(单位)$ c 2. $ c $ c $ c中的2D Hermitian电子系统中。通过证明关键指数$ν$不取决于疾病和边界条件的形式,进一步证实了过渡的普遍性。我们的结果表明,围绕其特殊点的非对称对称性的非热门系统构成了超级单元类别。

The critical exponents of continuous phase transitions of a Hermitian system depend on and only on its dimensionality and symmetries. This is the celebrated notion of the universality of continuous phase transitions. Here we report the superuniversality notion of Anderson localization transitions in non-Hermitian two-dimensional (2D) systems with exceptional points in which the critical exponents do not depend on the symmetries. The Anderson localization transitions are numerically studied by using the finite-size scaling analysis of the participation ratios. At the exceptional points of either second-order or fourth-order, two non-Hermitian systems with different symmetries have the same critical exponent $ν\simeq 2$ of correlation lengths. This value differs from all known 2D disordered Hermitian and non-Hermitian systems. In the symmetry-preserved and symmetry-broken phases, the non-Hermitian models with time-reversal symmetry and without spin-rotational symmetry (without time-reversal and spin-rotational symmetries) are in the same universality class of 2D Hermitian electron systems of Gaussian symplectic (unitary) ensemble, where $ν\simeq 2.7$ ($ν\simeq 2.3$). The universality of the transition is further confirmed by showing that the critical exponent $ν$ does not depend on the form of disorders and boundary conditions. Our results suggest that non-Hermitian systems of different symmetries around their exceptional points form a superuniversality class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源