论文标题
用于资源分配的在线组合拍卖以及供应成本和容量限制
Online Combinatorial Auctions for Resource Allocation with Supply Costs and Capacity Limits
论文作者
论文摘要
我们研究算法机理设计中的一般在线组合拍卖问题。提供商将多种类型的容量有限资源分配给以顺序和任意方式到达的客户。每个客户都具有她可以购买的资源捆绑包的私人估值功能(例如,在云计算中的CPU和RAM等不同资源的组合)。提供商收取购买一大堆资源并在分配的资源的供应成本上增加的客户的付款。目的是最大程度地提高社会福利,即客户对购买的捆绑包的总估值,减去提供商分配的所有资源的总供应成本。我们采用竞争性分析框架,并提供具有最佳竞争比率的发布价格机制。从没有其他在线算法无法达到更好的竞争比率的意义上说,我们的定价机制是最佳选择的。我们通过对云计算中在线资源分配的经验研究来验证理论结果。我们的数值结果表明,针对系统不确定性和优于现有基准的系统,提出的定价机制具有竞争力和鲁棒性。
We study a general online combinatorial auction problem in algorithmic mechanism design. A provider allocates multiple types of capacity-limited resources to customers that arrive in a sequential and arbitrary manner. Each customer has a private valuation function on bundles of resources that she can purchase (e.g., a combination of different resources such as CPU and RAM in cloud computing). The provider charges payment from customers who purchase a bundle of resources and incurs an increasing supply cost with respect to the totality of resources allocated. The goal is to maximize the social welfare, namely, the total valuation of customers for their purchased bundles, minus the total supply cost of the provider for all the resources that have been allocated. We adopt the competitive analysis framework and provide posted-price mechanisms with optimal competitive ratios. Our pricing mechanism is optimal in the sense that no other online algorithms can achieve a better competitive ratio. We validate the theoretic results via empirical studies of online resource allocation in cloud computing. Our numerical results demonstrate that the proposed pricing mechanism is competitive and robust against system uncertainties and outperforms existing benchmarks.