论文标题
用Lyman $α$ forest和Galaxy互相关探测大规模电离背景波动z = 2.4
Probing Large Scale Ionizing Background Fluctuation with Lyman $α$ Forest and Galaxy Cross-correlation at z=2.4
论文作者
论文摘要
大规模的元层紫外线背景(UVB)的幅度受两个因素的影响。首先,由于中性层间培养基吸收,它自然会减弱大于UVB光子的无平均值路径。其次,在宇宙中有离散和罕见的电离源,发出UVB光子,从而增强了局部UVB振幅。因此,对于对UVB振幅敏感并且能够像Lyman-$α$森林谱一样大规模敏感的宇宙学探测器,由于电离源的聚集而引起的波动是Lyman-$ lux Flux的重要因素,并且在这些大范围内对Lyman-$ lux flux Power Spectrum props to lyman-$ lux Transmints to themman-$ flux Transmints。在这项工作中,我们利用辐射传输模型,该模型通过其偏差$ b _ {\ rm j} $参数为UVB源分布和射击噪声$ \ overline {n} _ {\ rm j} $。我们使用Desi Lyman-$α$ Forest调查以及罗马太空望远镜发射线Galaxy调查来估算该模型的限制。我们显示了从DESI+Roman调查策略的最大重叠的UVB参数的检测灵敏度提高。我们还表明,通过增加重叠的调查区域可以打破两个电离源参数的退化。我们的结果激发了调查策略,更致力于探究UVB的大规模波动。
The amplitude of the metagalactic ultraviolet background (UVB) at large-scales is impacted by two factors. First, it naturally attenuates at scales larger than mean-free-path of UVB photons due to the absorption by neutral intergalactic medium. Second, there are discrete and rare ionizing sources distributing in the Universe, emitting the UVB photons, and thus enhancing the local UVB amplitude. Therefore, for cosmological probe that is sensitive to the UVB amplitude and capable of detecting the large scale like Lyman-$α$ forest spectrum, the fluctuation due to the clustering of ionizing sources becomes a significant factor for Lyman-$α$ flux transmission and leave imprints on Lyman-$α$ flux power spectrum at these large scales. In this work, we make use of a radiative transfer model that parametrizes the UVB source distribution by its bias $b_{\rm j}$ and shot noise $\overline{n}_{\rm j}$. We estimate the constraints on this model through the cross-correlation between Lyman-$α$ forest survey and galaxy survey, using the DESI Lyman-$α$ forest survey and the Roman Space Telescope emission line galaxy survey as an example. We show the detection sensitivity improvement for UVB parameters from disjoint to maximal overlap of DESI+Roman survey strategy. We also show that the degeneracy of two ionizing source parameters can be broken by increasing the overlapping survey area. Our results motivate survey strategies more dedicated to probe the UVB large-scale fluctuations.