论文标题
将合并症和地理位置信息纳入动脉粥样硬化心血管疾病的风险估计方程中的临床实用性收益
Clinical Utility Gains from Incorporating Comorbidity and Geographic Location Information into Risk Estimation Equations for Atherosclerotic Cardiovascular Disease
论文作者
论文摘要
目的:为具有特定合并症和地理位置的患者重新学习2013 ACC/AHA合并队列方程(PCE)的努力。文献中有超过363种自定义风险模型,我们旨在评估此类修订的模型,以确定绩效改善是否转化为临床实用程序的增长。 方法:我们使用ACC/AHA PCE变量重新培训基线PCE,并将其修改以整合主题级的地理位置和合并症信息。我们应用固定的效果,随机效应和极端梯度增强模型来处理位置引起的相关性和异质性。使用来自Optum Clinformatics Data Mart的2,464,522索赔记录对型号进行了培训,并在Hold-Out集合中进行了验证(n = 1,056,224)。我们评估了模型的整体表现以及由慢性肾脏疾病(CKD)或类风湿关节炎(RA)和地理位置所定义的亚组的整个亚组。我们使用决策曲线分析和模型的统计属性使用几个歧视和校准指标评估模型的预期净益处。 结果:CKD或RA患者的基线PCE总体校准了总体校准,以及人群少的位置。我们的修订模型改善了整体(GND P值= 0.41)和亚组校准,但仅在代表性不足的亚组中提高了净益处。在跨地理位置的亚组中,收益较大,并且具有合并性。 结论:使用合并症和位置信息修改PCE可显着增强模型的校准;但是,这种改进不一定转化为临床增长。因此,我们建议未来的工作来量化使用风险计算器来指导临床决策的后果。
Objective: There are several efforts to re-learn the 2013 ACC/AHA pooled cohort equations (PCE) for patients with specific comorbidities and geographic locations. With over 363 customized risk models in the literature, we aim to evaluate such revised models to determine if the performance improvements translate to gains in clinical utility. Methods: We re-train a baseline PCE using the ACC/AHA PCE variables and revise it to incorporate subject-level geographic location and comorbidity information. We apply fixed effects, random effects, and extreme gradient boosting models to handle the correlation and heterogeneity induced by locations. Models are trained using 2,464,522 claims records from Optum Clinformatics Data Mart and validated in the hold-out set (N=1,056,224). We evaluate models' performance overall and across subgroups defined by the presence or absence of chronic kidney disease (CKD) or rheumatoid arthritis (RA) and geographic locations. We evaluate models' expected net benefit using decision curve analysis and models' statistical properties using several discrimination and calibration metrics. Results: The baseline PCE is miscalibrated overall, in patients with CKD or RA, and locations with small populations. Our revised models improved both the overall (GND P-value=0.41) and subgroup calibration but only enhanced net benefit in the underrepresented subgroups. The gains are larger in the subgroups with comorbidities and heterogeneous across geographic locations. Conclusions: Revising the PCE with comorbidity and location information significantly enhanced models' calibration; however, such improvements do not necessarily translate to clinical gains. Thus, we recommend future works to quantify the consequences from using risk calculators to guide clinical decisions.