论文标题

多跳问题的基于及时的保护学习

Prompt-based Conservation Learning for Multi-hop Question Answering

论文作者

Deng, Zhenyun, Zhu, Yonghua, Chen, Yang, Qi, Qianqian, Witbrock, Michael, Riddle, Patricia

论文摘要

多跳问题回答(QA)需要对多个文档进行推理,以回答一个复杂的问题并提供可解释的支持证据。但是,提供支持证据还不足以证明模型已经执行了所需的推理来达到正确的答案。大多数现有的多跳质量检查方法也无法回答大部分子问题,即使他们的父母问题得到了正确的回答。在本文中,我们为多跳QA提出了基于及时的保护学习(PCL)框架,该框架从多跳QA任务中获取了新知识,同时保留了在单跳QA任务上学习的旧知识,从而减轻了遗忘。具体来说,我们首先在现有的单跳QA任务上训练模型,然后冻结此模型,并通过为多跳QA任务分配其他子网络来扩展它。此外,为了调整预训练的语言模型以刺激特定多跳问题所需的推理类型,我们学习了新型子网络的软提示,以执行特定于类型的推理。 HOTPOTQA基准测试的实验结果表明,PCL对多跳跃质量质量质量检查具有竞争力,并且在相应的单跳子问题上保留了良好的性能,这表明PCL通过忘记通过忘记来减轻知识丧失的功效。

Multi-hop question answering (QA) requires reasoning over multiple documents to answer a complex question and provide interpretable supporting evidence. However, providing supporting evidence is not enough to demonstrate that a model has performed the desired reasoning to reach the correct answer. Most existing multi-hop QA methods fail to answer a large fraction of sub-questions, even if their parent questions are answered correctly. In this paper, we propose the Prompt-based Conservation Learning (PCL) framework for multi-hop QA, which acquires new knowledge from multi-hop QA tasks while conserving old knowledge learned on single-hop QA tasks, mitigating forgetting. Specifically, we first train a model on existing single-hop QA tasks, and then freeze this model and expand it by allocating additional sub-networks for the multi-hop QA task. Moreover, to condition pre-trained language models to stimulate the kind of reasoning required for specific multi-hop questions, we learn soft prompts for the novel sub-networks to perform type-specific reasoning. Experimental results on the HotpotQA benchmark show that PCL is competitive for multi-hop QA and retains good performance on the corresponding single-hop sub-questions, demonstrating the efficacy of PCL in mitigating knowledge loss by forgetting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源