论文标题

大西洋飓风轨道和特征的模拟:一种深度学习方法

Simulation of Atlantic Hurricane Tracks and Features: A Deep Learning Approach

论文作者

Bose, Rikhi, Pintar, Adam L., Simiu, Emil

论文摘要

本文的目的是采用机器学习(ML)和深度学习(DL)技术从输入数据(风暴特征)中获取或从Hurdat2数据库模型中获得的输入数据(风暴特征),该模型能够模拟重要的飓风特性,例如登陆位置和风速,与历史记录一致。为了追求这一目标,创建了一个在经度和纬度方面提供风暴中心的轨迹模型,并创建了在10 $ m $高程时提供中心压力和最大1- $ min $风速的强度模型。轨迹和强度模型是耦合的,必须一次六个小时,因为在任何给定步骤中用作模型的输入的功能取决于上一个时间步骤的预测。一旦生成了合成风暴数据库,就可以从模拟域的任何部分提取感兴趣的属性,例如大风速的频率。轨迹和强度模型的耦合消除了海岸线内陆强度衰减的需求。将预测结果与历史数据进行了比较,并在三个例子中证明了风暴仿真模型的功效:新奥尔良,迈阿密和哈特拉斯角。

The objective of this paper is to employ machine learning (ML) and deep learning (DL) techniques to obtain from input data (storm features) available in or derived from the HURDAT2 database models capable of simulating important hurricane properties such as landfall location and wind speed that are consistent with historical records. In pursuit of this objective, a trajectory model providing the storm center in terms of longitude and latitude, and intensity models providing the central pressure and maximum 1-$min$ wind speed at 10 $m$ elevation were created. The trajectory and intensity models are coupled and must be advanced together, six hours at a time, as the features that serve as inputs to the models at any given step depend on predictions at the previous time steps. Once a synthetic storm database is generated, properties of interest, such as the frequencies of large wind speeds may be extracted from any part of the simulation domain. The coupling of the trajectory and intensity models obviates the need for an intensity decay inland of the coastline. Prediction results are compared to historical data, and the efficacy of the storm simulation models is demonstrated for three examples: New Orleans, Miami and Cape Hatteras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源