论文标题

从卷积神经网络构建的两个最大的星系形态分类目录中汲取的经验教训

Lessons Learned from the Two Largest Galaxy Morphological Classification Catalogues built by Convolutional Neural Networks

论文作者

Cheng, Ting-Yun, Sánchez, H. Domínguez, Vega-Ferrero, J., Conselice, C. J., Siudek, M., Aragón-Salamanca, A., Bernardi, M., Cooke, R., Ferreira, L., Huertas-Company, M., Krywult, J., Palmese, A., Pieres, A., Malagón, A. A. Plazas, Rosell, A. Carnero, Gruen, D., Thomas, D., Bacon, D., Brooks, D., James, D. J., Hollowood, D. L., Friedel, D., Suchyta, E., Sanchez, E., Menanteau, F., Paz-Chinchón, F., Gutierrez, G., Tarle, G., Sevilla-Noarbe, I., Ferrero, I., Annis, J., Frieman, J., García-Bellido, J., Mena-Fernández, J., Honscheid, K., Kuehn, K., da Costa, L. N., Gatti, M., Raveri, M., Pereira, M. E. S., Rodriguez-Monroy, M., Smith, M., Kind, M. Carrasco, Aguena, M., Swanson, M. E. C., Weaverdyck, N., Doel, P., Miquel, R., Ogando, R. L. C., Gruendl, R. A., Allam, S., Hinton, S. R., Dodelson, S., Bocquet, S., Desai, S., Everett, S., Scarpine, V.

论文摘要

我们比较了两个最大的星系形态目录,它们在中间红移时分离早期和晚期星系。这两个目录是通过将有监督的深度学习(卷积神经网络,CNN)应用于黑暗能源调查数据的构建,以至于$ \ sim $ 21 mag。用于构建目录的方法包括差异,例如切口大小,用于训练的标签以及CNN单色图像的输入与$ gri $ $ band归一化图像。此外,使用DES观察到的明亮星系($ i <18 $)对一个目录进行了训练,而另一个目录则使用明亮的星系($ r <17.5 $)和“仿真”星系训练,最高$ r $ band幅度量$ 22.5 $。尽管采用了不同的方法,但两个目录之间的一致性最高$ i <19 $,这表明CNN预测对样品至少比训练样本限制至少一个幅度的范围是可靠的。它还表明,基于单色图像的形态学分类至少在明亮的制度中与基于$ gri $ band图像的形态分类相当。在Fainter的幅度,$ i> 19 $的情况下,总体协议很好($ \ sim $ 95 \%),但主要是由两个目录中的大螺旋分数驱动的。相反,椭圆种群中的一致性不那么好,尤其是在微弱的幅度下。通过研究不匹配的病例,我们能够识别宽性星系(至少$ i <19 $),使用标准分类方法很难区分。两个目录的协同作用为选择一系列异常星系提供了独特的机会。

We compare the two largest galaxy morphology catalogues, which separate early and late type galaxies at intermediate redshift. The two catalogues were built by applying supervised deep learning (convolutional neural networks, CNNs) to the Dark Energy Survey data down to a magnitude limit of $\sim$21 mag. The methodologies used for the construction of the catalogues include differences such as the cutout sizes, the labels used for training, and the input to the CNN - monochromatic images versus $gri$-band normalized images. In addition, one catalogue is trained using bright galaxies observed with DES ($i<18$), while the other is trained with bright galaxies ($r<17.5$) and `emulated' galaxies up to $r$-band magnitude $22.5$. Despite the different approaches, the agreement between the two catalogues is excellent up to $i<19$, demonstrating that CNN predictions are reliable for samples at least one magnitude fainter than the training sample limit. It also shows that morphological classifications based on monochromatic images are comparable to those based on $gri$-band images, at least in the bright regime. At fainter magnitudes, $i>19$, the overall agreement is good ($\sim$95\%), but is mostly driven by the large spiral fraction in the two catalogues. In contrast, the agreement within the elliptical population is not as good, especially at faint magnitudes. By studying the mismatched cases we are able to identify lenticular galaxies (at least up to $i<19$), which are difficult to distinguish using standard classification approaches. The synergy of both catalogues provides an unique opportunity to select a population of unusual galaxies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源