论文标题
在竞争暗物质模型中匹配银河系卫星的质量功能
Matching the mass function of Milky Way satellites in competing dark matter models
论文作者
论文摘要
任何成功的暗物质模型都必须解释观察到的银河系(MW)卫星密度曲线的多样性,从非常密集的超安全到大型,低密度卫星(例如火山口〜II),这些卫星似乎更大,它们似乎更大。我们考虑冷暗物质(CDM),温暖的暗物质(WDM,3.3KeV热遗物功率谱)以及一种自我相互作用的暗物质模型(SIDM),该模型(SIDM)在低质量subhaloes中引起了重生的崩溃。这些密度曲线的预测因MW系统剥离中的模拟分辨率的局限性而变得复杂,因此,使用$ n $ body-body-body模拟在这三个模型中对卫星性质进行了预测,并结合了半分析晕圈剥离算法。我们发现,大多数质量$> 10^{8} $$ m _ {\ odot} $的CDM和WDM子径在剥离后足够大以适合大多数卫星;但是,所需的剥离量通常需要比Subhalo轨道上可用的更强的潮汐场。较低的WDM次哈子使该模型能够解释所需的卫星质量,其剥离量不如CDM所需的剥离,因此与较大的围地方的轨道一致。 SIDM内核提供了最适合大量的低密度卫星,而牺牲了许多$> 10^{9} $$ m _ {\ odot} $ subhaloes,可容纳没有观察到的模拟的低密度卫星。我们得出的结论是,SIDM模型必须具有很高的速度依赖性横截面才能匹配所有卫星,并且WDM与CDM相比,与MW卫星质量函数相比,略略有拟合。
Any successful model of dark matter must explain the diversity of observed Milky Way (MW) satellite density profiles, from very dense ultrafaints to large, low density satellites such as Crater~II that appear to be larger their anticipated host dark matter haloes. We consider cold dark matter (CDM), warm dark matter (WDM, 3.3keV thermal relic power spectrum), and a self-interacting dark matter model (SIDM) that induces gravothermal collapse in low mass subhaloes. Predictions for these density profiles are complicated by the limitations of simulation resolution in the stripping of subhaloes by the MW system, therefore we make predictions for satellite properties in these three models using $N$-body simulations combined with a semi-analytic halo stripping algorithm. We find that most CDM and WDM subhaloes of mass $>10^{8}$$M_{\odot}$ are large enough after stripping to fit most satellites; however, the required amount of stripping often requires a stronger tidal field than is available on the subhalo's orbit. The lower concentrations of WDM subhaloes enable this model to explain the required satellite masses with less stripping than is necessary for CDM, and is thus consistent with orbits of larger pericentres. SIDM cores offer the best fits to massive, low density satellites at the expense of predicting many $>10^{9}$$M_{\odot}$ subhaloes to host low density satellites with no observed analogue. We conclude that an SIDM model must have a very high velocity-dependent cross-section in order to match all satellites, and that WDM offers a marginally better fit than CDM to the MW satellite mass function.