论文标题
COHS-CQG:对话问题生成的上下文和历史选择
CoHS-CQG: Context and History Selection for Conversational Question Generation
论文作者
论文摘要
会话问题产生(CQG)是机器通过对话等人类(例如交互式阅读理解)的重要任务。与传统的单转交问题(SQG)相比,CQG更具挑战性的意义,即生成的问题不仅需要有意义,而且还必须与发生的对话历史记录保持一致。虽然先前的研究主要集中于如何建模对话的流量和对齐,但迄今为止,尚无对模型必需部分和历史的部分进行全面的研究。我们认为,缩短上下文和历史是至关重要的,因为它可以帮助模型更好地优化对话对齐属性。为此,我们提出了一个两阶段CQG框架COHS-CQG,该框架采用COHS模块来缩短输入的上下文和历史记录。特别是,COHS选择连续的句子,并根据其相关性分数通过顶级P策略转弯。我们的模型在答案感和答案环境中都可以在COQA上实现最新的表演。
Conversational question generation (CQG) serves as a vital task for machines to assist humans, such as interactive reading comprehension, through conversations. Compared to traditional single-turn question generation (SQG), CQG is more challenging in the sense that the generated question is required not only to be meaningful, but also to align with the occurred conversation history. While previous studies mainly focus on how to model the flow and alignment of the conversation, there has been no thorough study to date on which parts of the context and history are necessary for the model. We argue that shortening the context and history is crucial as it can help the model to optimise more on the conversational alignment property. To this end, we propose CoHS-CQG, a two-stage CQG framework, which adopts a CoHS module to shorten the context and history of the input. In particular, CoHS selects contiguous sentences and history turns according to their relevance scores by a top-p strategy. Our model achieves state-of-the-art performances on CoQA in both the answer-aware and answer-unaware settings.