论文标题
Inv-flow2posenet:使用图像,正:
INV-Flow2PoseNet: Light-Resistant Rigid Object Pose from Optical Flow of RGB-D Images using Images, Normals and Vertices
论文作者
论文摘要
本文介绍了一种新颖的体系结构,用于同时估算高度准确的光流和刚性场景转换,以实现困难的场景,在这种情况下,亮度假设因强烈的阴影变化而违反了亮度假设。如果是旋转物体或移动光源(例如在黑暗中遇到的汽车遇到的光源),场景的外观通常从一个视图到下一个视图都发生了很大变化。不幸的是,用于计算光流或姿势的标准方法是基于预期,即场景中特征在视图之间保持恒定。在调查的情况下,这些方法可能经常失败。提出的方法通过组合图像,顶点和正常数据来融合纹理和几何信息,以计算照明不变的光流。通过使用粗到最新的策略,学习了全球锚定的光流,从而减少了基于伪造的伪依据的影响。基于学习的光学流,提出了第二个体系结构,该体系结构可预测扭曲的顶点和正常地图的稳健刚性变换。特别注意具有强烈旋转的情况,这通常会导致这种阴影变化。因此,提出了一个三步程序,该程序可以利用正态和顶点之间的相关性。该方法已在新创建的数据集上进行了评估,该数据集包含具有强烈旋转和阴影效果的合成数据和真实数据。该数据代表了3D重建中的典型用例,其中该对象通常在部分重建之间以很大的步骤旋转。此外,我们将该方法应用于众所周知的Kitti Odometry数据集。即使由于实现了Brighness的假设,这不是该方法的典型用例,因此,还建立了对标准情况和与其他方法的关系的适用性。
This paper presents a novel architecture for simultaneous estimation of highly accurate optical flows and rigid scene transformations for difficult scenarios where the brightness assumption is violated by strong shading changes. In the case of rotating objects or moving light sources, such as those encountered for driving cars in the dark, the scene appearance often changes significantly from one view to the next. Unfortunately, standard methods for calculating optical flows or poses are based on the expectation that the appearance of features in the scene remain constant between views. These methods may fail frequently in the investigated cases. The presented method fuses texture and geometry information by combining image, vertex and normal data to compute an illumination-invariant optical flow. By using a coarse-to-fine strategy, globally anchored optical flows are learned, reducing the impact of erroneous shading-based pseudo-correspondences. Based on the learned optical flows, a second architecture is proposed that predicts robust rigid transformations from the warped vertex and normal maps. Particular attention is payed to situations with strong rotations, which often cause such shading changes. Therefore a 3-step procedure is proposed that profitably exploits correlations between the normals and vertices. The method has been evaluated on a newly created dataset containing both synthetic and real data with strong rotations and shading effects. This data represents the typical use case in 3D reconstruction, where the object often rotates in large steps between the partial reconstructions. Additionally, we apply the method to the well-known Kitti Odometry dataset. Even if, due to fulfillment of the brighness assumption, this is not the typical use case of the method, the applicability to standard situations and the relation to other methods is therefore established.