论文标题
隧道引起的山谷大厅波导中的分形变速器
Tunneling-induced fractal transmission in Valley Hall waveguides
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The Valley Hall effect provides a popular route to engineer robust waveguides for bosonic excitations such a photons and phonons. The almost complete absence of backscattering in many experiments has its theoretical underpinning in a smooth-envelope approximation that neglects large momentum transfer and is accurate only for small bulk band gaps and/or smooth domain walls. For larger bulk band gaps and hard domain walls backscattering is expected to become significant. Here, we show that in this experimentally relevant regime, the reflection of a wave at a sharp corner becomes highly sensitive on the orientation of the outgoing waveguide relative to the underlying lattice. Enhanced backscattering can be understood as being triggered by resonant tunneling transitions in quasimomentum space. Tracking the resonant tunneling energies as a function of the waveguide orientation reveals a self-repeating fractal pattern that is also imprinted in the density of states and the backscattering rate at a sharp corner.