论文标题
有效的自由空间,可用于生物分子指纹感应的超快子PS脉冲的芯片耦合
Efficient free-space to chip coupling of ultrafast sub-ps THz pulse for biomolecule fingerprint sensing
论文作者
论文摘要
Ultrafast子PS Thz脉冲传达了与生物分子的振动或旋转模式有关的富独特光谱指纹,可用于解决运动的时间依赖性动力学。因此,强烈要求一个有效的增强THZ光结合相互作用的平台。波导由于它们对电磁场的紧密空间限制和较长的相互作用距离,因此是有希望的平台。但是,由于超宽信号的超宽带宽特性,将子PS Thz脉冲的有效摄入量仍然具有挑战性。我们提出了一种由一对背对背的Vivaldi天线和90°弯曲的狭缝波导组成的传感芯片,以克服挑战。传感芯片的有效运行带宽范围为0.2至1.15 THz,自由空间可芯片耦合效率高达50%。在整个频段上,THZ信号高于噪声水平42.44 dB,峰为73.40 dB。为了占据有效的传感芯片的优势,我们已经成功地观察到了α-乳糖一水合物的特征性指纹,并且已经成功地观察到了在接近0.53 THz处的急剧吸收浸入,证明了该溶液的准确性。所提出的传感芯片具有有效的面板耦合,超宽的带宽,易于集成和制造,大规模的制造能力以及具有成本效益的优势,并且可以成为THZ轻型互动平台的强大候选者。
Ultrafast sub-ps THz pulse conveys rich distinctive spectral fingerprints related to the vibrational or rotational modes of biomolecules and can be used to resolve the time-dependent dynamics of the motions. Thus, an efficient platform for enhancing the THz light-matter interaction is strongly demanded. Waveguides, owing to their tightly spatial confinement of the electromagnetic fields and the longer interaction distance, are promising platforms. However, the efficient feeding of the sub-ps THz pulse to the waveguides remains challenging due to the ultra-wide bandwidth property of the ultrafast signal. We propose a sensing chip comprised of a pair of back-to-back Vivaldi antennas and a 90° bent slotline waveguide to overcome the challenge. The effective operating bandwidth of the sensing chip ranges from 0.2 to 1.15 THz, with the free-space to chip coupling efficiency up to 50%. Over the entire band, the THz signal is 42.44 dB above the noise level with a peak of 73.40 dB. To take advantages of the efficient sensing chip, we have measured the characteristic fingerprint of α-lactose monohydrate, and a sharp absorption dip at near 0.53 THz has been successfully observed demonstrating the accuracy of the proposed solution. The proposed sensing chip has the advantages of efficient in-plane coupling, ultra-wide bandwidth, easy integration and fabrication, large-scale manufacturing capability, and cost-effective, and can be a strong candidate for THz light-matter interaction platform.