论文标题

变异因果推断

Variational Causal Inference

论文作者

Wu, Yulun, Price, Layne C., Wang, Zichen, Ioannidis, Vassilis N., Barton, Robert A., Karypis, George

论文摘要

当结果是高维时(例如,基因表达,脉冲反应,人类的面部)和协方差相对有限的情况,对传统因果推理和监督学习方法的估算是一项具有挑战性的任务。在这种情况下,要在反事实处理下构建一个人的结果,至关重要的是要利用其在协变量之上观察到的事实结果中包含的个人信息。我们提出了一个深层的变异贝叶斯框架,该框架严格整合了两个主要的信息来源,以在反事实处理下进行结果构建:一个来源是嵌入高维事实结果中的个体特征;另一个来源是实际收到了这种利益疗法的相似受试者(具有相同协变量的受试者)的响应分布。

Estimating an individual's potential outcomes under counterfactual treatments is a challenging task for traditional causal inference and supervised learning approaches when the outcome is high-dimensional (e.g. gene expressions, impulse responses, human faces) and covariates are relatively limited. In this case, to construct one's outcome under a counterfactual treatment, it is crucial to leverage individual information contained in its observed factual outcome on top of the covariates. We propose a deep variational Bayesian framework that rigorously integrates two main sources of information for outcome construction under a counterfactual treatment: one source is the individual features embedded in the high-dimensional factual outcome; the other source is the response distribution of similar subjects (subjects with the same covariates) that factually received this treatment of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源