论文标题
检查和链接:成对病变对应指导乳房X线照片质量检测
Check and Link: Pairwise Lesion Correspondence Guides Mammogram Mass Detection
论文作者
论文摘要
由于乳腺癌的发生和死亡率很高,乳房X线照片中检测肿块很重要。在乳房X线照片质量检测中,对成对病变对应的建模特别重要。但是,大多数现有方法构建了相对粗糙的对应关系,并且尚未使用对应的监督。在本文中,我们提出了一个新的基于变压器的框架CL-NET,以端到端的方式学习病变检测和成对对应。在CL-NET中,提出了观察性病变检测器来实现跨视图候选者的动态相互作用,而病变接头则采用通信监督来更准确地指导相互作用过程。这两种设计的组合实现了对乳房X线照片的成对病变对应的精确理解。实验表明,CL-NET在公共DDSM数据集和我们的内部数据集上产生最先进的性能。此外,在低FPI制度中,它的表现优于先前的方法。
Detecting mass in mammogram is significant due to the high occurrence and mortality of breast cancer. In mammogram mass detection, modeling pairwise lesion correspondence explicitly is particularly important. However, most of the existing methods build relatively coarse correspondence and have not utilized correspondence supervision. In this paper, we propose a new transformer-based framework CL-Net to learn lesion detection and pairwise correspondence in an end-to-end manner. In CL-Net, View-Interactive Lesion Detector is proposed to achieve dynamic interaction across candidates of cross views, while Lesion Linker employs the correspondence supervision to guide the interaction process more accurately. The combination of these two designs accomplishes precise understanding of pairwise lesion correspondence for mammograms. Experiments show that CL-Net yields state-of-the-art performance on the public DDSM dataset and our in-house dataset. Moreover, it outperforms previous methods by a large margin in low FPI regime.