论文标题

数据驱动的光谱次级降低,用于非线性最佳对高维机器人的最佳控制

Data-Driven Spectral Submanifold Reduction for Nonlinear Optimal Control of High-Dimensional Robots

论文作者

Alora, John Irvin, Cenedese, Mattia, Schmerling, Edward, Haller, George, Pavone, Marco

论文摘要

高维非线性机器人系统的建模和控制仍然是一项具有挑战性的任务。尽管已经提出了各种模型和基于学习的方法来应对这些挑战,但它们通常缺乏对不同控制任务的普遍性,并且很少保留动态的结构。在这项工作中,我们提出了一种新的,数据驱动的方法,用于使用Spectral Submanifold还原(SSMR)从数据中提取低维模型。与其他数据驱动的方法相反,将动态模型适合训练轨迹,我们确定了嵌入在机器人系统的整个相空间中的通用,低维吸引子的动力学。这使我们能够获得可控制系统的计算索取模型,该模型可以保留系统的主要动力学,并且更好的轨迹轨迹与训练数据截然不同。我们证明了SSMR在动态轨迹跟踪任务中的卓越性能和概括性,包括基于Koopman操作员的方法。

Modeling and control of high-dimensional, nonlinear robotic systems remains a challenging task. While various model- and learning-based approaches have been proposed to address these challenges, they broadly lack generalizability to different control tasks and rarely preserve the structure of the dynamics. In this work, we propose a new, data-driven approach for extracting low-dimensional models from data using Spectral Submanifold Reduction (SSMR). In contrast to other data-driven methods which fit dynamical models to training trajectories, we identify the dynamics on generic, low-dimensional attractors embedded in the full phase space of the robotic system. This allows us to obtain computationally-tractable models for control which preserve the system's dominant dynamics and better track trajectories radically different from the training data. We demonstrate the superior performance and generalizability of SSMR in dynamic trajectory tracking tasks vis-a-vis the state of the art, including Koopman operator-based approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源