论文标题
由分数布朗运动驱动的半线性分布依赖性SDE的Bismut-Elworthy-LI公式
The Bismut-Elworthy-Li formula for semi-linear distribution-dependent SDEs driven by fractional Brownian motion
论文作者
论文摘要
在这项工作中,我们将展示解决因小分数布朗运动驱动的半线性平均现场随机微分方程的解决方案解决方案的存在,独特性和弱性。我们证明了Bismut-Elworthy-Li公式的延伸,并在方差掉期的灵敏度分析中显示了一些应用,以及相对于初始点的衍生物价格。
In this work, we will show the existence, uniqueness, and weak differentiability of the solution to semi-linear mean-field stochastic differential equations driven by fractional Brownian motion. We prove an extension of the Bismut-Elworthy-Li formula and show some applications in the sensitivity analysis of variance swaps and also the price of derivatives with respect to the initial point.