论文标题
通过贝叶斯网络建模评估专栏:一种务实的方法
Modelling Assessment Rubrics through Bayesian Networks: a Pragmatic Approach
论文作者
论文摘要
自动评估学习者能力是智能辅导系统中的一项基本任务。评估专栏通常会有效地描述相关能力和能力水平。本文介绍了一种直接从评估标题定义某些(部分)能力级别的评估标题中得出学习者模型的方法。该模型基于贝叶斯网络,并以不确定性(通常称为嘈杂的门)利用逻辑门来减少模型的参数数量,因此,以简化专家的启发并允许对智能辅导系统的实时推断。我们说明了如何应用该方法来自动对用于测试计算思维技能的活动的人类评估。从评估标题开始的模型的简单启发开辟了快速自动化几个任务的自动化的可能性,从而使它们在自适应评估工具和智能辅导系统的背景下更容易利用。
Automatic assessment of learner competencies is a fundamental task in intelligent tutoring systems. An assessment rubric typically and effectively describes relevant competencies and competence levels. This paper presents an approach to deriving a learner model directly from an assessment rubric defining some (partial) ordering of competence levels. The model is based on Bayesian networks and exploits logical gates with uncertainty (often referred to as noisy gates) to reduce the number of parameters of the model, so to simplify their elicitation by experts and allow real-time inference in intelligent tutoring systems. We illustrate how the approach can be applied to automatize the human assessment of an activity developed for testing computational thinking skills. The simple elicitation of the model starting from the assessment rubric opens up the possibility of quickly automating the assessment of several tasks, making them more easily exploitable in the context of adaptive assessment tools and intelligent tutoring systems.