论文标题

使用Wasserstein梯度流对政治系统建模

Modeling of Political Systems using Wasserstein Gradient Flows

论文作者

Lanzetti, Nicolas, Hajar, Joudi, Dörfler, Florian

论文摘要

对复杂的政治现象(例如政党两极分化)的研究需要政治制度的数学模型。在本文中,我们旨在建模政治制度的时间演变,在该制度中,各方自私地进行互动以最大化其政治成功(例如,投票人数)。更具体地说,我们将党派的意识形态鉴定为一维实用的意识形态空间的概率分布,并且我们在概率空间(也称为Wasserstein梯度流)中制定了梯度流以研究其时间进化。我们表征出现的动态系统的平衡,并在轻度假设下建立局部收敛。我们使用共和党和民主党在美国国会意识形态的时间演变的现实时间序列数据进行校准和验证我们的模型。我们的框架可以严格理解各种政治影响,例如各方的两极分化和同质性。除其他外,我们的机械模型可以解释为什么政党变得更加两极化,并且随着时间的流逝越来越不包容(他们的分布变得“更紧密”),直到一个政党中的所有候选人均无渐进地均为相同的意识形态立场。

The study of complex political phenomena such as parties' polarization calls for mathematical models of political systems. In this paper, we aim at modeling the time evolution of a political system whereby various parties selfishly interact to maximize their political success (e.g., number of votes). More specifically, we identify the ideology of a party as a probability distribution over a one-dimensional real-valued ideology space, and we formulate a gradient flow in the probability space (also called a Wasserstein gradient flow) to study its temporal evolution. We characterize the equilibria of the arising dynamic system, and establish local convergence under mild assumptions. We calibrate and validate our model with real-world time-series data of the time evolution of the ideologies of the Republican and Democratic parties in the US Congress. Our framework allows to rigorously reason about various political effects such as parties' polarization and homogeneity. Among others, our mechanistic model can explain why political parties become more polarized and less inclusive with time (their distributions get "tighter"), until all candidates in a party converge asymptotically to the same ideological position.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源