论文标题
2021年11月19日在Ad Leo上的大耀斑。同时XMM-Newton和Tess观察
The Great Flare of 2021 November 19 on AD Leo. Simultaneous XMM-Newton and TESS observations
论文作者
论文摘要
我们介绍了有关活跃的M Dwarf星AD Leonis的超荧光片的详细分析。该事件提出了一种罕见的情况,即在X射线(带有XMM-Newton)和光学(带有过境的系外行星调查卫星,Tess)中同时观察到了恒星耀斑。 0.2-12 KEV X射线频带($ 1.26 \ pm 0.01 \ CDOT 10^{33} $ ERG)和降压值($ e_ {f,bol} = 5.57 \ pm 0.03 \ pm 0.03 \ cdot 10^{33} $ ERG)都将辐射能量辐射。源自Ad Leo的接近性的非凡光子统计数据已在1-8 AA升级频段(X1445级)和集成能量($ e_ {f,goes} = 4.30 \ pm 0.05 \ pm 0.05 \ cdot 10^{32} $ ERG中,使与DACEMISH与flareS的数据进行比较。从太阳耀斑的经验关系的推断中,我们估计质子通量至少为$ 10^5 \,{cm^{ - 2} s^{ - 1} sr^{ - 1}} $伴随辐射输出。在苔丝白光耀斑的峰值和Go Band Flare峰的峰值之间的时间滞后,以及明确的Neupert效应,此事件非常接近标准(太阳能)耀斑场景。 X射线耀斑期间的时间分辨光谱显示,除了血浆温度和发射度量的时间演变外,电子密度和元素丰度的暂时增加,以及在Corona中延伸13%的恒星半径($ 4 \ cdot 10^9 $ cm)的环路。对苔丝和XMM-Newton数据的耀斑足迹面积的独立估计表明,光耀斑的高温(25000 K),但我们认为,光学和X射线耀斑区域在Ad Leo大气中的物理区域更有可能。
We present a detailed analysis of a superflare on the active M dwarf star AD Leonis. The event presents a rare case of a stellar flare observed simultaneously in X-rays (with XMM-Newton) and in optical (with the Transiting Exoplanet Survey Satellite, TESS). The radiated energy both in the 0.2-12 keV X-ray band ($1.26 \pm 0.01 \cdot 10^{33}$ erg) and the bolometric value ($E_{F,bol} = 5.57 \pm 0.03 \cdot 10^{33}$ erg) put this event at the lower end of the superflare class. The exceptional photon statistics deriving from the proximity of AD Leo has enabled measurements in the 1-8 AA GOES band for the peak flux (X1445 class) and integrated energy ($E_{F,GOES} = 4.30 \pm 0.05 \cdot 10^{32}$ erg), making possible a direct comparison with data on flares from our Sun. From extrapolations of empirical relations for solar flares we estimate that a proton flux of at least $10^5\,{cm^{-2} s^{-1} sr^{-1}}$ accompanied the radiative output. With a time lag of 300s between the peak of the TESS white-light flare and the GOES band flare peak as well as a clear Neupert effect this event follows very closely the standard (solar) flare scenario. Time-resolved spectroscopy during the X-ray flare reveals, in addition to the time evolution of plasma temperature and emission measure, a temporary increase of electron density and elemental abundances, and a loop that extends in the corona by 13% of the stellar radius ($4 \cdot 10^9$ cm). Independent estimates of the footprint area of the flare from TESS and XMM-Newton data suggest a high temperature of the optical flare (25000 K), but we consider more likely that the optical and X-ray flare areas represent physically distinct regions in the atmosphere of AD Leo.