论文标题

使用24 GHz多普勒雷达

Vision Transformer with Convolutional Encoder-Decoder for Hand Gesture Recognition using 24 GHz Doppler Radar

论文作者

Kehelella, Kavinda, Leelarathne, Gayangana, Marasinghe, Dhanuka, Kariyawasam, Nisal, Ariyarathna, Viduneth, Madanayake, Arjuna, Rodrigo, Ranga, Edussooriya, Chamira U. S.

论文摘要

变压器与卷积编码器结合使用,最近已使用Micro-Doppler签名用于手势识别(HGR)。我们建议使用Multi-Antenna连续波多普勒雷达接收器为HGR提供基于视觉转换器的体系结构。所提出的架构由三个模块组成:一个卷积编码器,带有三个变压器层的注意模块和一个多层感知器。新型的卷积解码器有助于将具有较大尺寸的斑块喂入注意力模块,以改善特征提取。用与在24 GHz的两种连续波多普勒雷达接收器相对应的数据集获得的实验结果(Skaria等人出版)证实,所提出的架构的准确性达到了98.3%,从而实质上超过了使用的数据集中的最终目的。

Transformers combined with convolutional encoders have been recently used for hand gesture recognition (HGR) using micro-Doppler signatures. We propose a vision-transformer-based architecture for HGR with multi-antenna continuous-wave Doppler radar receivers. The proposed architecture consists of three modules: a convolutional encoderdecoder, an attention module with three transformer layers, and a multi-layer perceptron. The novel convolutional decoder helps to feed patches with larger sizes to the attention module for improved feature extraction. Experimental results obtained with a dataset corresponding to a two-antenna continuous-wave Doppler radar receiver operating at 24 GHz (published by Skaria et al.) confirm that the proposed architecture achieves an accuracy of 98.3% which substantially surpasses the state-of-the-art on the used dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源