论文标题
了解膜蒸馏中的流动动力学:反应堆设计对极化的影响
Understanding Flow Dynamics in Membrane Distillation: Effects of Reactor Design on Polarization
论文作者
论文摘要
全尺度膜蒸馏(MD)系统的优化和设计通常需要由实验室规模系统开发的舍伍德和努塞尔特相关性。但是,实验室尺度系统中的入口效应会显着影响反应堆中的热量,质量和动量转移,因此会影响开发的实验舍伍德和努塞尔特相关性的准确性。在此,进行了使用OpenFOAM的计算流体动力学(CFD)模拟,以了解MD系统中右角弯曲和入口设计对流动动力学,温度和浓度极化的影响。仿真结果表明,右角弯曲和突然膨胀的入口的存在导致院长涡流的形成。院长涡流增强了MD系统中的垂直混合,并降低温度和浓度极化。在相同的体积流速的MD系统中,具有直角弯曲和进气口的MD系统中的温度和浓度极化系数差异很大。我们的研究表明,具有相同体积流量但设计不同的实验室尺度系统导致努塞尔特和舍伍德相关性明显不同。这项研究证明了实验室规模系统的CFD信息设计以最大程度地减少入口效应并抑制院长涡流,以跨多个尺度抑制院长涡流。
Optimization and design of full-scale membrane distillation (MD) systems usually require Sherwood and Nusselt correlations that are developed from lab-scale systems. However, entrance effects in lab-scale systems can significantly impact heat, mass and momentum transfer in the reactor, therefore affect the accuracy of the developed experimental Sherwood and Nusselt correlations. Here, Computational Fluid Dynamics (CFD) simulations using OpenFOAM are performed to understand the effects of right-angled bends and inlet design on flow dynamics, temperature and concentration polarization in MD systems. Simulation results show that the presence of right-angled bends and inlets with sudden expansions lead to the formation of Dean vortices. Dean vortices enhance perpendicular mixing in MD systems and reduce both temperature and concentration polarization. Temperature and concentration polarization coefficients in MD systems with right-angled bends and inlets with sudden expansions vary significantly for the same volumetric flow rate. Our studies show that lab-scale systems with the same volumetric flow rate but different designs lead to significantly different Nusselt and Sherwood correlations. This study demonstrates the importance of CFD-informed design of lab-scale systems to minimize entrance effects and suppress Dean vortices for consistent model development and calibration across multiple scales.