论文标题

量子环形$ \ mathfrak {gl} _1 $的整体形式

An integral form of quantum toroidal $\mathfrak{gl}_1$

论文作者

Neguţ, Andrei

论文摘要

我们考虑($ k $的所有$ n $)的(直接总和)的半尼尔德通勤的$ \ mathfrak {gl} _n $的多种多样,并以两种方式描述其卷积代数结构:首先是一个明显的shuffle algebra(即特定的$ \ \ m m iathbbbb {z_____________ 1}] $ - 均值的$ k $ - 一个点的理论),第二个为$ \ m athbb {z} [q_1^{\ pm 1},q_2^{\ pm 1}] $ - 代数 - 由某些元素$ \ bar {\ bar {\ bar { \ mathbb {n} \ times \ mathbb {z}} $。

We consider the (direct sum over all $n$ of the) $K$-theory of the semi-nilpotent commuting variety of $\mathfrak{gl}_n$, and describe its convolution algebra structure in two ways: the first as an explicit shuffle algebra (i.e. a particular $\mathbb{Z}[q_1^{\pm 1}, q_2^{\pm 1}]$-submodule of the equivariant $K$-theory of a point) and the second as the $\mathbb{Z}[q_1^{\pm 1}, q_2^{\pm 1}]$-algebra generated by certain elements $\{\bar{H}_{n,d}\}_{(n,d) \in \mathbb{N} \times \mathbb{Z}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源