论文标题
OAIR:使用PSO和美学质量评估的对象感知图像重新定位
OAIR: Object-Aware Image Retargeting Using PSO and Aesthetic Quality Assessment
论文作者
论文摘要
图像重新定位旨在改变图像大小,同时保留重要的内容并最大程度地减少明显的扭曲。但是,先前的图像重新定位方法创建了遭受工件和扭曲的输出。此外,大多数以前的作品都试图同时重新定位输入图像的背景和前景。同时调整前景和背景会导致对象的长宽比的变化。对于人类对象,纵横比的变化是不可取的。我们提出了一种克服这些问题的重新定位方法。提出的方法包括以下步骤。首先,介入方法使用输入图像和前景对象的二进制掩码来生成背景图像,而没有任何前景对象。其次,接缝雕刻方法将背景图像调整到目标大小。然后,一种超分辨率方法增加了输入图像质量,然后提取前景对象。最后,馈入粒子群优化算法(PSO)中的重新定位背景和提取的超级分辨对象。 PSO算法使用审美质量评估作为其目标函数,以确定将对象放置在背景中的最佳位置和大小。我们使用图像质量评估和美学质量评估措施来显示我们与流行的图像重新定位技术相比的优越结果。
Image retargeting aims at altering an image size while preserving important content and minimizing noticeable distortions. However, previous image retargeting methods create outputs that suffer from artifacts and distortions. Besides, most previous works attempt to retarget the background and foreground of the input image simultaneously. Simultaneous resizing of the foreground and background causes changes in the aspect ratios of the objects. The change in the aspect ratio is specifically not desirable for human objects. We propose a retargeting method that overcomes these problems. The proposed approach consists of the following steps. Firstly, an inpainting method uses the input image and the binary mask of foreground objects to produce a background image without any foreground objects. Secondly, the seam carving method resizes the background image to the target size. Then, a super-resolution method increases the input image quality, and we then extract the foreground objects. Finally, the retargeted background and the extracted super-resolued objects are fed into a particle swarm optimization algorithm (PSO). The PSO algorithm uses aesthetic quality assessment as its objective function to identify the best location and size for the objects to be placed in the background. We used image quality assessment and aesthetic quality assessment measures to show our superior results compared to popular image retargeting techniques.