论文标题

SAR目标识别的散射模型指导的对抗示例:攻击和防御

Scattering Model Guided Adversarial Examples for SAR Target Recognition: Attack and Defense

论文作者

Peng, Bowen, Peng, Bo, Zhou, Jie, Xie, Jianyue, Liu, Li

论文摘要

基于深的神经网络(DNNS)的合成孔径雷达(SAR)自动靶标识别(ATR)系统已显示出非常容易受到故意设计但几乎无法察觉的对抗扰动的攻击,但是当添加到靶向物体中时可能会偏向DNN推断。在将DNN应用于高级SAR ATR应用程序时,这引起了严重的安全问题。因此,增强DNN的对抗性鲁棒性对于对现代现实世界中的SAR ATR系统实施DNN至关重要。本文旨在构建更强大的基于DNN的SAR ATR模型,探讨了SAR成像过程的领域知识,并提出了一种新型的散射模型引导的对抗攻击(SMGAA)算法,该算法可以以电磁散射响应的形式产生对抗性扰动(称为对手散射)。所提出的SMGAA由两个部分组成:1)参数散射模型和相应的成像方法以及2)基于自定义的基于梯度的优化算法。首先,我们介绍了有效的归因散射中心模型(ASCM)和一种通用成像方法,以描述SAR成像过程中典型几何结构的散射行为。通过进一步制定几种策略来考虑SAR目标图像的领域知识并放松贪婪的搜索程序,建议的方法无需谨慎地进行审核,但可以有效地找到有效的ASCM参数来欺骗SAR分类器并促进可靠的模型培训。对MSTAR数据集的全面评估表明,SMGAA产生的对抗散射器对SAR处理链中的扰动和转换比当前研究的攻击更为强大,并且有效地构建针对恶意散射器的防御模型。

Deep Neural Networks (DNNs) based Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) systems have shown to be highly vulnerable to adversarial perturbations that are deliberately designed yet almost imperceptible but can bias DNN inference when added to targeted objects. This leads to serious safety concerns when applying DNNs to high-stake SAR ATR applications. Therefore, enhancing the adversarial robustness of DNNs is essential for implementing DNNs to modern real-world SAR ATR systems. Toward building more robust DNN-based SAR ATR models, this article explores the domain knowledge of SAR imaging process and proposes a novel Scattering Model Guided Adversarial Attack (SMGAA) algorithm which can generate adversarial perturbations in the form of electromagnetic scattering response (called adversarial scatterers). The proposed SMGAA consists of two parts: 1) a parametric scattering model and corresponding imaging method and 2) a customized gradient-based optimization algorithm. First, we introduce the effective Attributed Scattering Center Model (ASCM) and a general imaging method to describe the scattering behavior of typical geometric structures in the SAR imaging process. By further devising several strategies to take the domain knowledge of SAR target images into account and relax the greedy search procedure, the proposed method does not need to be prudentially finetuned, but can efficiently to find the effective ASCM parameters to fool the SAR classifiers and facilitate the robust model training. Comprehensive evaluations on the MSTAR dataset show that the adversarial scatterers generated by SMGAA are more robust to perturbations and transformations in the SAR processing chain than the currently studied attacks, and are effective to construct a defensive model against the malicious scatterers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源