论文标题

多元反向高斯分布和不对称内核平滑的正常近似值

Normal approximations for the multivariate inverse Gaussian distribution and asymmetric kernel smoothing on $d$-dimensional half-spaces

论文作者

Belzile, Léo R., Desgagné, Alain, Genest, Christian, Ouimet, Frédéric

论文摘要

本文介绍了在$ d $维的半空间上支持的新型密度估计器。它是文献中半空间的第一个不对称内核密度估计器。将Minami(2003)的多元逆高斯(MIG)密度作为内核并融合了局部自适应参数,估算器实现了理想的边界特性。为了分析其平均综合平方误差(MISE)和渐近正态性,在MIG和相应的多变量高斯分布之间建立了局部限制定理和概率度量界限,具有相同的平均值矢量和协方差矩阵,这也可能是独立的。此外,开发了一种用于生成MIG随机矢量的新算法,证明比Minami的算法更快,更准确,基于Brownian的首次击球位置表示。然后,该算法用于讨论和比较在各种目标分布下的仿真研究中,用于估算器的最佳旋转和可能性交叉验证带宽。作为应用,MIG不对称内核用于平滑适合大型电磁风暴的广义帕累托模型的后验分布。

This paper introduces a novel density estimator supported on $d$-dimensional half-spaces. It stands out as the first asymmetric kernel density estimator for half-spaces in the literature. Using the multivariate inverse Gaussian (MIG) density from Minami (2003) as the kernel and incorporating locally adaptive parameters, the estimator achieves desirable boundary properties. To analyze its mean integrated squared error (MISE) and asymptotic normality, a local limit theorem and probability metric bounds are established between the MIG and the corresponding multivariate Gaussian distribution with the same mean vector and covariance matrix, which may also be of independent interest. Additionally, a new algorithm for generating MIG random vectors is developed, proving to be faster and more accurate than Minami's algorithm based on a Brownian first-hitting location representation. This algorithm is then used to discuss and compare optimal MISE and likelihood cross-validation bandwidths for the estimator in a simulation study under various target distributions. As an application, the MIG asymmetric kernel is used to smooth the posterior distribution of a generalized Pareto model fitted to large electromagnetic storms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源