论文标题

用于芯片模拟的热机学习求解器

A Thermal Machine Learning Solver For Chip Simulation

论文作者

Ranade, Rishikesh, He, Haiyang, Pathak, Jay, Chang, Norman, Kumar, Akhilesh, Wen, Jimin

论文摘要

热分析在不同的温度场景下提供了对电子芯片行为的更深入见解,并可以更快地设计探索。但是,使用FEM或CFD,在芯片上获得详细而准确的热曲线非常耗时。因此,迫切需要加快片上热溶液以解决各种系统方案。在本文中,我们提出了一个热机学习(ML)求解器,以加快芯片的热模拟。热ML-Solver是最近新型方法CoAemlsim(可组合自动编码器的机器学习模拟器)的扩展,并对溶液算法进行了修改,以处理常数和分布式HTC。在不同情况下,针对商业求解器(例如ANSYS MAPDL)以及最新的ML基线UNET验证了所提出的方法,以证明其增强的准确性,可伸缩性和概括性。

Thermal analysis provides deeper insights into electronic chips behavior under different temperature scenarios and enables faster design exploration. However, obtaining detailed and accurate thermal profile on chip is very time-consuming using FEM or CFD. Therefore, there is an urgent need for speeding up the on-chip thermal solution to address various system scenarios. In this paper, we propose a thermal machine-learning (ML) solver to speed-up thermal simulations of chips. The thermal ML-Solver is an extension of the recent novel approach, CoAEMLSim (Composable Autoencoder Machine Learning Simulator) with modifications to the solution algorithm to handle constant and distributed HTC. The proposed method is validated against commercial solvers, such as Ansys MAPDL, as well as a latest ML baseline, UNet, under different scenarios to demonstrate its enhanced accuracy, scalability, and generalizability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源