论文标题

多发功能:一种通过虚拟目标有效调整粒子加速器发射器的新方法

Multipoint-BAX: A New Approach for Efficiently Tuning Particle Accelerator Emittance via Virtual Objectives

论文作者

Miskovich, Sara A., Neiswanger, Willie, Colocho, William, Emma, Claudio, Garrahan, Jacqueline, Maxwell, Timothy, Mayes, Christopher, Ermon, Stefano, Edelen, Auralee, Ratner, Daniel

论文摘要

尽管光束发射量对于高亮度加速器的性能至关重要,但通常会限制优化,因为通常通过四极扫描完成的发射率计算通常会很慢。此类计算是$ \ textit {multipoint查询} $的一种类型,即每个查询都需要多个辅助测量。在处理目标时,传统的黑盒优化器(例如贝叶斯优化)在处理目标时效率缓慢且效率低下,但每个查询都只能返回发射率。我们提出了一种新的信息理论算法,多发功能点,用于对多点查询的黑框优化,该算法使用贝叶斯算法执行(BAX)的技术查询和模型单个光束尺寸测量值。我们的方法通过通过$ \ textit {虚拟目标} $获取点来避免加速器上的慢多点查询,即从快速学习的模型中计算出发射目标,而不是直接从加速器中计算出来。我们使用多发功能重点来最大程度地减少Linac Cooherent Light Source(LCLS)和高级加速器实验测试II(Facet-II)的设施。在仿真中,与现有方法相比,我们的方法是20 $ \ times $ $ $ $,噪音更强大。在实时测试中,它与facet-II的手工调整发射率相匹配,并且比在LCLS上的手动调整低24%。我们的方法代表了优化多点查询的概念转变,我们预计它可以很容易地适应粒子加速器和其他科学仪器中的类似问题。

Although beam emittance is critical for the performance of high-brightness accelerators, optimization is often time limited as emittance calculations, commonly done via quadrupole scans, are typically slow. Such calculations are a type of $\textit{multipoint query}$, i.e. each query requires multiple secondary measurements. Traditional black-box optimizers such as Bayesian optimization are slow and inefficient when dealing with such objectives as they must acquire the full series of measurements, but return only the emittance, with each query. We propose a new information-theoretic algorithm, Multipoint-BAX, for black-box optimization on multipoint queries, which queries and models individual beam-size measurements using techniques from Bayesian Algorithm Execution (BAX). Our method avoids the slow multipoint query on the accelerator by acquiring points through a $\textit{virtual objective}$, i.e. calculating the emittance objective from a fast learned model rather than directly from the accelerator. We use Multipoint-BAX to minimize emittance at the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests II (FACET-II). In simulation, our method is 20$\times$ faster and more robust to noise compared to existing methods. In live tests, it matched the hand-tuned emittance at FACET-II and achieved a 24% lower emittance than hand-tuning at LCLS. Our method represents a conceptual shift for optimizing multipoint queries, and we anticipate that it can be readily adapted to similar problems in particle accelerators and other scientific instruments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源