论文标题

分享张量茶:数据库如何利用机器学习生态系统

Share the Tensor Tea: How Databases can Leverage the Machine Learning Ecosystem

论文作者

Asada, Yuki, Fu, Victor, Gandhi, Apurva, Gemawat, Advitya, Zhang, Lihao, He, Dong, Gupta, Vivek, Nosakhare, Ehi, Banda, Dalitso, Sen, Rathijit, Interlandi, Matteo

论文摘要

我们演示了张量查询处理器(TQP):一种自动将关系运算符编译到张量程序中的查询处理器。通过利用Tensor Runtime(例如Pytorch),TQP能够:(1)与ML工具集成(例如,用于数据摄取的PANDAS,可视化的张量); (2)针对不同的硬件(例如CPU,GPU)和软件(例如浏览器)后端; (3)端到端加速了包含关系和ML操作员的查询。 TQP足以支持TPC-H基准测试,并且提供的性能与专门的CPU和GPU查询处理器相当,而且通常更好。

We demonstrate Tensor Query Processor (TQP): a query processor that automatically compiles relational operators into tensor programs. By leveraging tensor runtimes such as PyTorch, TQP is able to: (1) integrate with ML tools (e.g., Pandas for data ingestion, Tensorboard for visualization); (2) target different hardware (e.g., CPU, GPU) and software (e.g., browser) backends; and (3) end-to-end accelerate queries containing both relational and ML operators. TQP is generic enough to support the TPC-H benchmark, and it provides performance that is comparable to, and often better than, that of specialized CPU and GPU query processors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源