论文标题
物理受限数据驱动的非线性材料建模的深度自动编码器
Deep autoencoders for physics-constrained data-driven nonlinear materials modeling
论文作者
论文摘要
物理受限的数据驱动计算是一种新兴的计算范式,它允许基于材料数据库直接模拟复杂材料并绕过经典的本构模型构建。但是,处理高维应用和外推概括仍然很难。本文在数据驱动的框架下介绍了深度学习技术,以解决非线性材料建模中的这些基本问题。为此,引入了自动编码器神经网络体系结构,以学习给定材料数据库的基础低维表示(嵌入)。然后将经过离线训练的自动编码器和发现的嵌入空间纳入在线数据驱动的计算中,以便可以从数据库中搜索最佳的材料状态,从而在低维空间上执行,旨在通过预测的材料数据来增强鲁棒性和可预测性。为了确保数值稳定性和代表性的本构歧管,提出了针对基于自动装置的数据驱动的求解器量身定制的凸性插值方案,以构建材料状态。在这项研究中,通过对非线性生物组织进行建模来证明所提出的方法的适用性。还进行了有关数据噪声,数据大小和稀疏性,训练初始化和模型体系结构的参数研究,以检查所提出方法的鲁棒性和收敛性。
Physics-constrained data-driven computing is an emerging computational paradigm that allows simulation of complex materials directly based on material database and bypass the classical constitutive model construction. However, it remains difficult to deal with high-dimensional applications and extrapolative generalization. This paper introduces deep learning techniques under the data-driven framework to address these fundamental issues in nonlinear materials modeling. To this end, an autoencoder neural network architecture is introduced to learn the underlying low-dimensional representation (embedding) of the given material database. The offline trained autoencoder and the discovered embedding space are then incorporated in the online data-driven computation such that the search of optimal material state from database can be performed on a low-dimensional space, aiming to enhance the robustness and predictability with projected material data. To ensure numerical stability and representative constitutive manifold, a convexity-preserving interpolation scheme tailored to the proposed autoencoder-based data-driven solver is proposed for constructing the material state. In this study, the applicability of the proposed approach is demonstrated by modeling nonlinear biological tissues. A parametric study on data noise, data size and sparsity, training initialization, and model architectures, is also conducted to examine the robustness and convergence property of the proposed approach.