论文标题

伪造:使用python中的泰勒 - itō集成剂的精确布朗动力学

Pychastic: Precise Brownian Dynamics using Taylor-Itō integrators in Python

论文作者

Waszkiewicz, Radost, Bartczak, Maciej, Kolasa, Kamil, Lisicki, Maciej

论文摘要

在过去的十年中,Python驱动的物理模拟生态系统一直在稳步增长,允许更大的互操作性,并成为对物理现象的数值探索,尤其是在软物质系统中的数值探索中的重要工具。在胶体动力学中需要快速,精确的数值集成的需求的驱动下,我们在这里在数学上一致的iTōcilculus形式主义中制定了布朗动力学(BD)的问题,并开发了Python软件包以帮助数值计算。我们表明,借助自动分化软件包,可以实现经典的Taylor-Itō集成器,而无需事先计算系数函数的导数的负担。此外,我们展示了如何规避BD模拟的困难,例如计算在扩散方程式中移动性张量的差异以及在使用$ s^2 $和$ so(3)$上使用Dynamics时遇到的不连续的轨迹。所得的Python软件包Pychastic能够执行BD模拟,包括以低级编程语言中专用实现的速度进行流体动力相互作用,但具有更简单的最终用户界面。

In the last decade, Python-powered physics simulations ecosystem has been growing steadily, allowing greater interoperability, and becoming an important tool in numerical exploration of physical phenomena, particularly in soft matter systems. Driven by the need for fast and precise numerical integration in colloidal dynamics, here we formulate the problem of Brownian Dynamics (BD) in a mathematically consistent formalism of the Itō calculus, and develop a Python package to assist numerical computations. We show that, thanks to the automatic differentiation packages, the classical truncated Taylor-Itō integrators can be implemented without the burden of computing the derivatives of the coefficient functions beforehand. Furthermore, we show how to circumvent the difficulties of BD simulations such as calculations of the divergence of the mobility tensor in the diffusion equation and discontinuous trajectories encountered when working with dynamics on $S^2$ and $SO(3)$. The resulting Python package, Pychastic, is capable of performing BD simulations including hydrodynamic interactions at speeds comparable to dedicated implementations in lower-level programming languages, but with a much simpler end-user interface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源