论文标题

印度道路数据集用于支撑和悬挂的交通信号灯检测

An Indian Roads Dataset for Supported and Suspended Traffic Lights Detection

论文作者

Gautam, Sarita, Kumar, Anuj

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Autonomous vehicles are growing rapidly, in well-developed nations like America, Europe, and China. Tech giants like Google, Tesla, Audi, BMW, and Mercedes are building highly efficient self-driving vehicles. However, the technology is still not mainstream for developing nations like India, Thailand, Africa, etc., In this paper, we present a thorough comparison of the existing datasets based on well-developed nations as well as Indian roads. We then developed a new dataset "Indian Roads Dataset" (IRD) having more than 8000 annotations extracted from 3000+ images shot using a 64 (megapixel) camera. All the annotations are manually labelled adhering to the strict rules of annotations. Real-time video sequences have been captured from two different cities in India namely New Delhi and Chandigarh during the day and night-light conditions. Our dataset exceeds previous Indian traffic light datasets in size, annotations, and variance. We prove the amelioration of our dataset by providing an extensive comparison with existing Indian datasets. Various dataset criteria like size, capturing device, a number of cities, and variations of traffic light orientations are considered. The dataset can be downloaded from here https://sites.google.com/view/ird-dataset/home

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源